【问题描述】用迭代法求,x=sqrt(a),求平方根的迭代公式为x[n+1]=1/2(x[n]+a/x[n])。 【输入形式】a的值使用input函数从键盘输入。 【输出形式】求得的平方根使用print函数输出。
时间: 2023-12-10 17:39:25 浏览: 81
您可以使用以下代码实现该功能:
```python
a = float(input("请输入一个数:"))
x = 1 # 初始值可以是任何正数
while True:
new_x = 0.5 * (x + a / x)
if abs(new_x - x) < 1e-6: # 判断是否满足精度要求,这里取1e-6作为精度
break
x = new_x # 更新x的值
print("该数的平方根为:", x)
```
首先使用`input`函数从键盘输入一个数`a`,然后将平方根的初始值`x`设为1。接着使用一个`while`循环不断迭代,每次更新`x`的值,直到满足精度要求(即新旧`x`之差小于1e-6)。最后使用`print`函数输出结果。
相关问题
用迭代法求x=sqrt(a)。求平方根的迭代公式为:xn+1= (1/2)(xn+ a/xn),要求前后两次求出的x的差的绝对值小于10-5。
### 回答1:
题目要求用迭代法求平方根x=sqrt(a),迭代公式为: xn+1= (1/2)(xn+ a/xn)。要求前后两次求出的x的差的绝对值小于10^-5。
具体做法为:首先给定一个初始值x0,然后根据迭代公式求出x1。接着用x1代替x0,再次套用迭代公式求出x2,以此类推,直到前后两次求出的x的差的绝对值小于10^-5为止。
例如,假设a=2,x0=1,则按照迭代公式:
x1= (1/2)(1+2/1)=1.5
x2= (1/2)(1.5+2/1.5)=1.4166666666666667
x3= (1/2)(1.4166666666666667+2/1.4166666666666667)=1.4142156862745099
x4= (1/2)(1.4142156862745099+2/1.4142156862745099)=1.4142135623746899
x5= (1/2)(1.4142135623746899+2/1.4142135623746899)=1.414213562373095
可以看到,当x5求出时,前后两次求出的x的差的绝对值小于10^-5,即|x5-x4|<10^-5,因此x5即为所求的平方根。
### 回答2:
迭代法是一种数值计算中常用的方法,用于求解方程的近似解。求平方根的迭代公式是一种特殊的迭代法,可以通过多次迭代得到一个数的平方根。下面我们来详细介绍一下用迭代法求平方根的步骤:
1. 确定迭代公式
根据题意,我们需要求解的是一个数的平方根,可以使用以下迭代公式:
xn+1= (1/2)(xn a/xn)
其中,xn表示第n次迭代后的近似解,xn+1表示第n+1次迭代后的近似解,a表示待求的数。
2. 确定迭代初值
在第一次迭代时,我们需要确定一个初值x0。初值的选取对于迭代的收敛性有很大的影响,通常可以选取待求数的一半作为初值。
3. 进行迭代计算
根据迭代公式,我们可以依次计算xn+1的值,直到满足精度要求为止。具体地,我们可以通过循环来实现迭代计算,直到|xn+1 - xn|<10-5。
4. 返回结果
当满足精度要求后,我们可以将最后一次迭代后的xn+1作为待求数的平方根,返回这个值即可。
总之,迭代法是一种非常常用的数值计算方法,可以用于求解各种方程的近似解。它的关键在于确定迭代公式和初值的选取,以及通过迭代不断逼近精度要求。对于初学者来说,理解这些概念和步骤可以帮助我们更好地掌握迭代法的应用。
### 回答3:
使用迭代法求解平方根的方法可以在不需要进行大量数学计算的前提下,快速获得所需结果。具体过程如下:
假设我们要求解的是a的平方根x,则我们可以选取任意一个初始值x0,通过公式xn+1 = (1/2)*(xn + a/xn)进行计算,然后将计算结果作为下一次迭代的初始值,一直循环计算, 直至前后两次迭代的x差的绝对值小于10^-5 时,得到的最终迭代结果即为x=sqrt(a)。
具体的,迭代法计算平方根的过程可以概括为以下几步:
1. 选择初始值x0,如x0=a/2;
2. 计算第一轮迭代的结果x1,根据公式x1 = (1/2)*(x0 + a/x0)计算,得到x1;
3. 计算第二轮迭代的结果x2,根据公式x2 = (1/2)*(x1 + a/x1)计算,得到x2;
4. 一直循环上述计算过程,直至前后两次迭代的x差的绝对值小于10^-5为止;
5. 最终计算结果即为x=sqrt(a)。
需要注意的是,在实际应用中,由于计算机的运算精度有限,可能存在舍入误差,因此在进行迭代计算时,需要设定一个容差范围,确保计算结果的稳定性和准确性。
总之,使用迭代法计算平方根,可以较快速地获得结果,且计算过程简单易懂,是一种较为常用的数学算法之一。
用迭代法求x=sqrt(a)
以下是使用牛顿迭代法求解的 Python 代码:
```python
def sqrt(a):
x = a
while True:
y = (x + a / x) / 2
if abs(y - x) < 1e-10:
return y
x = y
```
该函数首先将初始值 x 设为 a,然后不断迭代求解,直到当前值 y 与上一次值 x 的差小于 1e-10 时返回 y,即为所求的平方根。每次迭代时,根据牛顿迭代法的公式计算下一个值 y,并将其赋给 x 进行下一次迭代。
阅读全文