已知正整数N(N<=100),设S=1!+2!+3!+...N!。其中"!"表示阶乘,即N!=1*2*3*……*(N-1)*N,如:3!=1*2*3=6。用c++计算结果S的值

时间: 2023-12-30 15:06:09 浏览: 125
以下是使用 C 语言计算结果 S 的代码: ```c #include <stdio.h> int main() { int N; long long S = 1; // 防止结果溢出,使用 long long 类型 printf("请输入正整数 N:"); scanf("%d", &N); for (int i = 1; i <= N; i++) { long long factorial = 1; // 防止计算阶乘时溢出,使用 long long 类型 for (int j = 1; j <= i; j++) { factorial *= j; } S *= factorial; } printf("%lld", S); return 0; } ``` 代码思路: 1. 通过 `scanf` 函数获取用户输入的正整数 `N`; 2. 使用一个循环,从 1 到 N 遍历每一个数 `i`; 3. 在循环中,使用另一个循环计算 `i` 的阶乘,并将该阶乘乘到 `S` 上; 4. 最终输出结果 `S`。 需要注意的是,当 `N` 较大时,`S` 的值可能会非常大,甚至超出 `long long` 类型的表示范围,导致结果错误。因此,在实际应用中需要根据具体情况采用合适的数据类型或算法来避免这种问题。
相关问题

已知正整数n**(n<=100)**,设s=1!+2!+3!+...+n!。其中“!”表示阶乘,即n!=123*...(n-1)n。如:3!=123=6。请编程实现,输入正整数n,输出计算结果s的值。

好的,我可以帮你解决这个问题。以下是 Python 代码实现: ```python n = int(input("请输入正整数n:")) s = 0 factorial = 1 for i in range(1, n + 1): factorial *= i s += factorial print("计算结果s的值为:", s) ``` 首先,我们输入一个正整数n,然后初始化变量s为0,变量factorial为1。接着,使用for循环遍历1到n,每次将i乘到factorial中,并将结果加到s中。最后输出计算结果s的值即可。

小蓝从公司出发,要去拜访N (3<=N<=15) 个客户,已知公司到每个客户的路程时间,及N个客户之间的路程时间。请计算出小蓝拜访完所有客户并返回到公司,最少需要多少时间。 (道路双向通行,可重复走) 例如: N = 3,有3个客户需要拜访,公司到1号、2号、3号客户的路程时间依次为9,7,5,客户1到客户2和客户3的路程时间依次是4,6,客户2到客户3的路程时间是3。 从公司出发拜访完3名客户并返回公司最少需要的路程时间为21,行走路线为: 公司 --> 3号--> 2号--> 1号--> 公司 (21=5+3+4+9) 输入描述 第一行输入一个正整数N(3<N<15),表示要拜访的客户数量第二行输入N个正整数 (1<=正整数<=1000),依次表示公司到1号~N号客户的路程时间,正整数之间以一个空格隔开 第三行输入N-1个正整数(1<=正整数<=1000),依次表示1号客户到2号~N号客户的路程时间,正整数之间以一个空格隔开第四行输入N-2个正整数(1<=正整数<=1000),依次表示2号客户到3号~N号客户的路程时间,正整数之间以一个空格隔开 .... 第N+1行输入一个正整数 (1<=正整数<=1000),表示N-1号客户到N号客户的路程时间 输出描述 输出一个整数,表示小蓝拜访完N名客户并返回公司最少需要的路程时间

这个问题可以使用动态规划来解决。我们可以定义状态dp[i][S]表示当前在第i个客户,已经访问过的客户集合为S时,到达公司的最少时间。其中,S是一个二进制状态,如果第j个客户已经访问过,那么S的第j位就是1,否则就是0。初始状态为dp[0][0]=0,表示还没有开始访问客户。 接下来我们考虑状态转移。假设我们已经到达了第i个客户,接下来要决定下一步去哪个客户。因为从任意一个客户都可以到达下一个客户,所以我们可以枚举集合S中还没有访问过的客户,假设下一个要访问的客户是j。那么状态转移方程为: dp[j][S|(1<<j-1)] = min(dp[i][S] + t[i][j]),其中t[i][j]表示从i到j的距离。 其中,S|(1<<j-1)表示把S的第j位变成1,表示访问了第j个客户。 最后的答案就是dp[0][(1<<n)-1],表示访问完所有客户回到公司的最少时间。 下面是代码实现:

相关推荐

最新推荐

recommend-type

厦门工学院在广东2021-2024各专业最低录取分数及位次表.pdf

全国各大学在广东2021-2024各专业最低录取分数及位次表
recommend-type

基于深度学习的目标检测研究综述.pdf

基于深度学习的目标检测研究综述.pdf
recommend-type

3_9月6日 上午11点27分.m4a..mp3

3_9月6日 上午11点27分.m4a..mp3
recommend-type

AirKiss技术详解:无线传递信息与智能家居连接

AirKiss原理是一种创新的信息传输技术,主要用于解决智能设备与外界无物理连接时的网络配置问题。传统的设备配置通常涉及有线或无线连接,如通过路由器的Web界面输入WiFi密码。然而,AirKiss技术简化了这一过程,允许用户通过智能手机或其他移动设备,无需任何实际连接,就能将网络信息(如WiFi SSID和密码)“隔空”传递给目标设备。 具体实现步骤如下: 1. **AirKiss工作原理示例**:智能插座作为一个信息孤岛,没有物理连接,通过AirKiss技术,用户的微信客户端可以直接传输SSID和密码给插座,插座收到这些信息后,可以自动接入预先设置好的WiFi网络。 2. **传统配置对比**:以路由器和无线摄像头为例,常规配置需要用户手动设置:首先,通过有线连接电脑到路由器,访问设置界面输入运营商账号和密码;其次,手机扫描并连接到路由器,进行子网配置;最后,摄像头连接家庭路由器后,会自动寻找厂商服务器进行心跳包发送以保持连接。 3. **AirKiss的优势**:AirKiss技术简化了配置流程,减少了硬件交互,特别是对于那些没有显示屏、按键或网络连接功能的设备(如无线摄像头),用户不再需要手动输入复杂的网络设置,只需通过手机轻轻一碰或发送一条消息即可完成设备的联网。这提高了用户体验,降低了操作复杂度,并节省了时间。 4. **应用场景扩展**:AirKiss技术不仅适用于智能家居设备,也适用于物联网(IoT)场景中的各种设备,如智能门锁、智能灯泡等,只要有接收AirKiss信息的能力,它们就能快速接入网络,实现远程控制和数据交互。 AirKiss原理是利用先进的无线通讯技术,结合移动设备的便利性,构建了一种无需物理连接的设备网络配置方式,极大地提升了物联网设备的易用性和智能化水平。这种技术在未来智能家居和物联网设备的普及中,有望发挥重要作用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

交叉验证全解析:数据挖掘中的黄金标准与优化策略

![交叉验证全解析:数据挖掘中的黄金标准与优化策略](https://img-blog.csdnimg.cn/img_convert/eff0a03452b18f6b259f99cebef24bd9.png) # 1. 交叉验证的基本概念和重要性 ## 1.1 交叉验证的定义 交叉验证是一种统计方法,用于评估并改进机器学习模型的泛化能力。它通过将数据集分为几个小的“折”(或称为“子集”),然后迭代使用这些数据子集来训练和测试模型,从而得到模型性能的更准确估计。 ## 1.2 交叉验证的重要性 在机器学习过程中,我们通常面临一个重要的问题:模型可能对训练数据过度拟合,而不能很好地推广到新数据
recommend-type

在交换机上创建 VLAN10、VLAN20和VLAN30,将交换机 B 的 2-5 接口加入到 VLAN 10 中 用ensp写出配置命令

在交换机上配置VLAN并分配接口到特定的VLAN中,通常需要登录到交换机的命令行界面。以下是在华为交换机上使用eNSP(Enterprise Network Simulation Platform,企业网络模拟平台)模拟器进行VLAN配置的基本步骤和命令: 首先,进入系统视图: ``` system-view ``` 然后创建VLAN10、VLAN20和VLAN30: ``` vlan 10 vlan 20 vlan 30 ``` 接下来,将交换机B的2到5端口加入到VLAN10中,假设交换机B的接口编号为GigabitEthernet0/0/2至GigabitEthernet0/0/5
recommend-type

Hibernate主键生成策略详解

"Hibernate各种主键生成策略与配置详解" 在关系型数据库中,主键是表中的一个或一组字段,用于唯一标识一条记录。在使用Hibernate进行持久化操作时,主键的生成策略是一个关键的配置,因为它直接影响到数据的插入和管理。以下是Hibernate支持的各种主键生成策略的详细解释: 1. assigned: 这种策略要求开发者在保存对象之前手动设置主键值。Hibernate不参与主键的生成,因此这种方式可以跨数据库,但并不推荐,因为可能导致数据一致性问题。 2. increment: Hibernate会从数据库中获取当前主键的最大值,并在内存中递增生成新的主键。由于这个过程不依赖于数据库的序列或自增特性,它可以跨数据库使用。然而,当多进程并发访问时,可能会出现主键冲突,导致Duplicate entry错误。 3. hilo: Hi-Lo算法是一种优化的增量策略,它在一个较大的范围内生成主键,减少数据库交互。在每个session中,它会从数据库获取一个较大的范围,然后在内存中分配,降低主键碰撞的风险。 4. seqhilo: 类似于hilo,但它使用数据库的序列来获取范围,适合Oracle等支持序列的数据库。 5. sequence: 这个策略依赖于数据库提供的序列,如Oracle、PostgreSQL等,直接使用数据库序列生成主键,保证全局唯一性。 6. identity: 适用于像MySQL这样的数据库,它们支持自动增长的主键。Hibernate在插入记录时让数据库自动为新行生成主键。 7. native: 根据所连接的数据库类型,自动选择最合适的主键生成策略,如identity、sequence或hilo。 8. uuid: 使用UUID算法生成128位的唯一标识符,适用于分布式环境,无需数据库支持。 9. guid: 类似于uuid,但根据不同的实现可能会有所不同,通常在Windows环境下生成的是GUID字符串。 10. foreign: 通过引用另一个表的主键来生成当前表的主键,适用于关联实体的情况。 11. select: 在插入之前,通过执行SQL查询来获取主键值,这种方式需要开发者提供定制的SQL语句。 12. 注释方式配置: 可以通过在Java实体类的@Id和@GeneratedValue注解中指定generator属性来配置自定义的主键生成策略。 13. 小结: Hibernate的主键生成策略选择应基于数据库特性、性能需求以及是否需要跨数据库兼容等因素。在实际应用中,需要根据项目具体需求选择最适合的策略。 注意,合理选择主键生成策略对于数据库性能和数据一致性至关重要。例如,increment策略在多进程环境下可能会出现问题,而sequence和identity策略则更安全,但可能不适合所有数据库系统。因此,开发者应充分理解每种策略的优缺点,并结合实际情况作出决策。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【数据挖掘模型评估】:AUC-ROC曲线深度剖析及应用

![【数据挖掘模型评估】:AUC-ROC曲线深度剖析及应用](https://us.v-cdn.net/6030995/uploads/lithium_attachments/image/serverpage/image-id/197iD52A116307C7E332/roc.png) # 1. 数据挖掘模型评估基础 在数据挖掘领域,评估一个模型的性能是至关重要的环节。这不仅关系到模型是否能够满足预期任务的需求,而且还涉及到模型泛化能力的判定。传统上,模型的评估指标包括准确度、召回率、精确率等。然而,这些指标在面对不平衡数据集时可能会产生误导。因此,数据挖掘者需要更全面和深入的评估方法,而R