在关系模式R(ABC)中函数依赖集F={AB→C,BC→A},则 R最高达到( )。 A 1NF 2NF C ЗNF BCNF

时间: 2024-03-26 15:39:41 浏览: 28
根据函数依赖集F,可以得出如下的依赖关系图: ``` +---+ +---+ | A |-----| C | +---+ +---+ ^ | | v +---+ +---+ | B |-----| A | +---+ +---+ ``` 可以发现,R中存在非主属性C依赖于码AB,而BC依赖于码A,因此R不符合2NF。进一步分解可以得到: R1(AB, C) R2(BC, A) 此时,R1和R2都符合2NF,因此R符合BCNF。答案为BCNF。
相关问题

设有关系模式R(A,B,C,D,E),F是R上成立的函数依赖集,F={AB→C,CD→A,AE→BC}:(1)求R的所有候选码,并说明理由(用求函数闭包的方法求解)。(2)试问R达到第几范式,并说明理由。

您好,感谢您的提问。以下是对您问题的回答: 根据您提供的函数依赖集 F,我们可以得到以下的函数闭包集合: - A+ = ACD (根据 CD→A 推出) - B+ = BECDA (根据 AE→BC 推出) - C+ = C (根据 AB→C 无法推出其他属性) - D+ = D (同理 C+) - E+ = BECDA (同理 B+) 根据候选码的定义,如果某个属性集合能够唯一决定关系模式 R 中所有属性,那么这个属性集合就是 R 的候选码。根据函数依赖集 F 的定义,我们可以得出以下结论: - AB 是 R 的候选码。因为,从 AB 中可以推出 C,而从 AC、BC 中均无法推出所有属性(即 A、B、C、D、E)。 - CD 也是 R 的候选码。因为,CD 可以决定 A,而从 AC、BC 中均无法推出所有属性。 - AE 不是 R 的候选码。因为,从 AE 中可以推出 BC,但是 BC 无法决定 D。 因此,R 的所有候选码为 AB 和 CD。 根据范式的定义,如果一个关系模式满足某一范式的所有要求,但不满足比这一范式更高级的任何范式的要求,那么这个关系模式就达到了这一范式。根据候选码和函数依赖集 F,我们可以得出以下结论: - AB → C 违反了第二范式(2NF)。因为 C 不完全依赖于 AB,而是部分依赖于 AB。解决方法是将 R 分解成 R1(ABD)和 R2(ABC),其中 R1 中包含了函数依赖集 {CD→A},R2 中包含了函数依赖集 {AB→C}。 - CD → A 和 AE → BC 均满足第三范式(3NF)和 Boyce-Codd 范式(BCNF)。因为它们的决定因素均为候选码。 因此,R 的范式为 BCNF。 希望以上回答能够解决您的问题,如有疑问请随时追问。

给定关系模式R< U, F >, U = (A, B, C, D, E), F = {AB→C, B→D, C→E, CE→B, AC→B},求R的候选键,判断范式级别,分解成3NF,要求保持函数依赖。

你的问题很专业,让我想一想…… 根据关系模式R< U, F >,其中U = (A, B, C, D, E),F = {AB→C, B→D, C→E, CE→B, AC→B}。 首先,我们要找到R的候选键,可以通过以下步骤来找到: 1. 列出所有可能的超键,即包含U中所有属性的所有子集。 2. 排除掉不满足函数依赖的超键,即对于F中的每个函数依赖X→Y,X必须包含在超键中,否则排除该超键。 3. 排除掉包含其他超键的超键。 按照以上步骤,可以列出所有可能的超键: - A - B - C - AB - AC - BC - CE - ABC - ACE 排除掉不满足函数依赖的超键: - A - B - C - AB - AC - CE - ABC 排除掉包含其他超键的超键: - A - B - C - AC - CE 因此,R的候选键为{A, B, C}。 接下来,我们需要判断R的范式级别。可以通过以下步骤来判断: 1. 对于1NF,检查每个属性是否是原子的。在这个关系中,每个属性都是原子的,因此1NF已满足。 2. 对于2NF,检查是否存在部分依赖。即,是否存在非主属性依赖于候选键的一部分属性。在这个关系中,不存在部分依赖,因此2NF已满足。 3. 对于3NF,检查是否存在传递依赖。即,是否存在非主属性依赖于另一个非主属性。在这个关系中,存在传递依赖C→E,因此不满足3NF。 因此,我们需要将R分解成3NF。根据合成法则,我们可以得到以下关系模式: R1< ACB >,其中包含属性ACB,函数依赖为{AB→C, AC→B}。 R2< BDC >,其中包含属性BDC,函数依赖为{B→D}。 R3< CEB >,其中包含属性CEB,函数依赖为{CE→B}。 分解后的关系模式满足3NF,同时保持原有的函数依赖。

相关推荐

最新推荐

recommend-type

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar

Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rarJava开发案例-springboot-19-校验表单重复提交-源代码+文档.rar Java开发案例-springboot-19-校验表单重复提交-源代码+文档.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。