torch.rfft参数有哪些?
时间: 2024-03-29 13:16:18 浏览: 158
torch.rfft是PyTorch中的函数,用于将实数信号转换为复数频谱。它的参数如下:
```
torch.rfft(input, signal_ndim, normalized=False, onesided=True)
```
- input:要进行傅里叶变换的实数信号,可以是一维、二维或三维的张量。
- signal_ndim:傅里叶变换的信号维度。对于一维信号,signal_ndim=1;对于二维信号,signal_ndim=2;对于三维信号,signal_ndim=3。
- normalized:是否对结果进行归一化,默认为False。
- onesided:是否只保留正频率部分,默认为True,即只保留第一个一半的频率系数。
注意:torch.rfft函数返回的是一个复数频谱,其形状为`(*input.shape[:-signal_ndim], (signal_ndim + 1) // 2, 2)`。这里的`(*input.shape[:-signal_ndim],)`表示输入信号的前面的维度不变,而`((signal_ndim + 1) // 2, 2)`表示频谱的形状。其中,第一个维度为频率,第二个维度为实部和虚部。如果onesided设置为True,则只返回前一半的频率系数。
相关问题
旧版torch.rfft和新版torch.fft.rfft2的区别
`torch.rfft` 和 `torch.fft.rfft2` 都是用来执行快速傅里叶变换(FFT)的函数,但是在PyTorch的不同版本中它们的使用方法和行为可能有所不同。
在旧版PyTorch中,`torch.rfft` 主要用于对一维信号执行实数到复数的FFT变换。这个函数返回的是复数结果,其中包含了频域的实部和虚部。
而在新版PyTorch中,`torch.fft` 模块已经引入,它提供了一套更全面的FFT函数集合。`torch.fft.rfft2` 是这个模块中的一个函数,专门用于执行二维实数到复数的FFT变换。与旧版的 `torch.rfft` 相比,`torch.fft.rfft2` 主要用于处理二维数据,比如图像。
`torch.fft.rfft2` 不仅限于处理二维数据,还可以处理多维数据,并且通常提供了更多的选项,例如控制输出的维度和形状等。新版的FFT模块还提供了一系列其他的FFT函数,包括一维和多维的实数和复数FFT变换。
以下是一个使用旧版 `torch.rfft` 的例子(假设是用于一维信号):
```python
import torch
# 假设信号长度为 6,batch size 为 1
signal = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=torch.float)
# 执行实数到复数的FFT变换
fft_result = torch.rfft(signal, 1)
print(fft_result)
```
下面是新版 `torch.fft.rfft2` 的一个例子(假设是用于处理图像这样的二维数据):
```python
import torch
# 假设我们有一个 3x3 的图像数据,batch size 为 1
signal = torch.tensor([[
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]
]], dtype=torch.float)
# 执行二维实数到复数的FFT变换
fft_result = torch.fft.rfft2(signal)
print(fft_result)
```
在使用新版的 `torch.fft` 模块时,你可能会注意到一些API变化,比如函数的命名和参数的组织方式。如果你正在从旧版迁移到新版,你需要仔细阅读新版的文档以确保正确使用这些函数。
torch.rfft的参数
torch.rfft函数是PyTorch中用于进行实数输入的快速傅里叶变换(FFT)的函数,其参数如下:
- input(Tensor):输入张量,数据类型为float32或float64。
- signal_ndim(int):信号的维数,可以是1、2、3或4。
- normalized(bool):是否进行归一化,默认为False,表示不进行归一化。
- onesided(bool):是否只返回傅里叶变换的单边结果,默认为True,表示只返回单边结果。
- dim(int或元组):进行FFT变换的维度或维度元组,默认为最后一维。
- inverse(bool):是否进行傅里叶逆变换,默认为False,表示进行正向变换。
其中,input和signal_ndim是必选参数,其他参数都有默认值。
阅读全文