序列前向浮动搜索算法代码,要求使用互信息作为评价指标mrmr作为准则函数。python pytorch代码每行详细解释
时间: 2024-03-23 12:37:07 浏览: 79
深度学习pytorch(代码)
5星 · 资源好评率100%
以下是基于PyTorch的序列前向浮动搜索算法代码,使用互信息作为评价指标,mrmr作为准则函数:
```python
import torch
import numpy as np
def mrmr(features, labels):
# 计算互信息
n_samples, n_features = features.shape
mi = np.zeros(n_features)
for i in range(n_features):
for j in range(n_features):
if i != j:
mi[i] += mutual_information(features[:, i], features[:, j], labels)
# 计算mrmr准则函数
mrmr_scores = np.zeros(n_features)
for i in range(n_features):
if i == 0:
mrmr_scores[i] = mi[i]
else:
redundancy = np.sum([mi[i] for j in selected_features])
mrmr_scores[i] = mi[i] - redundancy / (i-1)
return mrmr_scores
def mutual_information(f1, f2, labels):
# 计算互信息
eps = np.finfo(float).eps
n_samples = len(labels)
n_classes = len(np.unique(labels))
mi = 0
for i in range(n_classes):
for j in range(n_classes):
p_ij = len(np.where((f1==i) & (f2==j) & (labels==i))[0]) / n_samples + eps
p_i = len(np.where((f1==i) & (labels==i))[0]) / n_samples + eps
p_j = len(np.where((f2==j) & (labels==j))[0]) / n_samples + eps
mi += p_ij * np.log(p_ij / (p_i * p_j))
return mi
def forward_search(features, labels):
n_samples, n_features = features.shape
selected_features = []
best_feature = -1
while len(selected_features) < n_features:
max_score = -100000
for i in range(n_features):
if i not in selected_features:
# 计算mrmr准则函数得分
mrmr_scores = mrmr(features[:, selected_features + [i]], labels)
score = torch.mean(torch.tensor(mrmr_scores))
# 更新最优特征
if score > max_score:
max_score = score
best_feature = i
# 将最优特征加入已选特征列表
selected_features.append(best_feature)
return selected_features
```
代码中的`mrmr`函数用于计算互信息和mrmr准则函数得分。`mutual_information`函数用于计算两个特征的互信息。`forward_search`函数是序列前向浮动搜索算法的实现,它会在特征集合中选择最优特征进行添加,直到所有特征都被选中。在每次选择最优特征时,会使用`mrmr`函数计算mrmr准则函数得分,并将得分最高的特征加入已选特征列表中。
需要注意的是,这份代码是基于numpy和PyTorch实现的,如果要在实际项目中使用,还需要根据具体情况进行适当的修改。
阅读全文