\frac{\partial L}{\partial x_{p,q,k}}=\sum_{i,j\in S_{p,q}}\frac{\partial L}{\partial y_{i,j,k}}\cdot [x_{p,q,k}=\max_{p',q'\in S_{i,j}}x_{p',q',k}],解释上述公式中的所有符号含义

时间: 2023-08-30 13:09:38 浏览: 118
RAR

Nodos_EL_2.rar_Euler lagrange_Euler-lagrange

这个公式是超像素池化层的反向传播公式,用于计算损失函数关于输入$x_{p,q,k}$的梯度。下面是公式中各符号的含义: - $L$:损失函数 - $\frac{\partial L}{\partial x_{p,q,k}}$:损失函数关于输入$x_{p,q,k}$的梯度 - $S_{p,q}$:包含像素$(p,q)$的超像素区域 - $i,j$:超像素区域$S_{p,q}$中的行列索引 - $y_{i,j,k}$:超像素池化层输出的第$i$行、第$j$列、第$k$个通道的元素值 - $\frac{\partial L}{\partial y_{i,j,k}}$:损失函数关于输出$y_{i,j,k}$的梯度 - $x_{p,q,k}$:原始图像在位置$(p,q)$上第$k$个通道的像素值 - $[\cdot]$:指示函数,当中括号中的条件成立时,函数值为1,否则为0 - $\max_{p',q'\in S_{i,j}}x_{p',q',k}$:超像素区域$S_{i,j}$中所有像素的$k$通道像素值的最大值 公式的含义是,对于输入$x_{p,q,k}$,将池化输出的梯度$\frac{\partial L}{\partial y_{i,j,k}}$按照它在哪个位置取到最大值的条件进行加权求和,即将$\frac{\partial L}{\partial y_{i,j,k}}$乘上一个指示函数$[x_{p,q,k}=\max_{p',q'\in S_{i,j}}x_{p',q',k}]$,这个指示函数只有在$x_{p,q,k}$所在的超像素区域$(i,j)$中的最大值为$x_{p,q,k}$时才为1,否则为0。最后将所有超像素区域中贡献$x_{p,q,k}$的梯度加起来,就得到了$\frac{\partial L}{\partial x_{p,q,k}}$。
阅读全文

相关推荐

将这段话细致描述一下波士顿房价预测是一个经典的回归问题,可以使用梯度下降算法来训练模型并获得最优解。 具体思路如下: 数据预处理:对数据进行标准化、归一化等处理,使得数据的特征值在同一范围内,有利于模型训练。 构建模型:选择适合回归问题的模型,如线性回归模型、多项式回归模型等。在这里,我们以线性回归模型为例,假设房价与各个特征值之间存在线性关系,即 $y = w_0 + w_1x_1 + w_2x_2 + ... + w_nx_n$。 定义损失函数:选择适合回归问题的损失函数,如均方误差(MSE)损失函数,即 $J(w) = \frac{1}{2m}\sum_{i=1}^{m}(y_i - \hat{y_i})^2$,其中 $m$ 是数样本,$y_i$ 是第 $i$ 个样本的真实值,$\hat{y_i}$ 是模型预测值。 梯度下降算法:通过不断迭代更新模型参数,使得损失函数最小化。具体做法是计算损失函数对每个参数的偏导数,然后按照梯度方向更新参数,即 $w_j = w_j - \alpha\frac{\partial J(w)}{\partial w_j}$,其中 $\alpha$ 是学习率,控制每次迭代更新的步长。 模型评估:使用测试集验证模型的预测效果,如计算均方误差、平均绝对误差等指标。 以上就是使用梯度下降算法进行波士顿房价预测的主要思路。在实际应用中,还需要注意数据的质量、特征的选择、模型的复杂度等问题,以获得更准确、可靠的预测结果。

该过程正确吗?如果不正确,请给出修改后的正确版本。\begin{equation}\label{7a} \begin{aligned} \min_{}C_{1}\sum_{i=1}^{m_{2}}\frac{\sigma^{2}}{2}[1-\exp(-\frac{\xi_{i}^{2}}{2\sigma^{2}})]^{\theta} \end{aligned} \end{equation} We can rewrite \eqref{7a} as: \begin{equation}\label{15} \begin{aligned} \max_{\alpha}G_{1}(\alpha) \end{aligned} \end{equation} where \begin{equation}\label{15} \begin{aligned} G_{1}(\alpha)= C_{1}\sum_{i=1}^{m_{2}}\frac{\sigma^{2}}{2}[\exp(-\frac{\xi_{i}^{2}}{2\sigma^{2}})]^{\theta} \end{aligned} \end{equation} To facilitate the following derivations, we define the convex function $g_{\theta}(v)$ as: \begin{equation} g{\theta}(v) = \frac{1}{\theta}[-v\log(-v) + v]^{\theta}, ~~v<0 \end{equation} Then, using the theory of conjugate functions, we have: \begin{equation} \exp(-\frac{\xi_i^2}{2\sigma^2}) = \sup{v<0}[v\frac{\xi_i^2}{2\sigma^2}-g_{\theta}(v)], ~~~v=-\exp(-\frac{\xi_i^2}{2\sigma^2}) \end{equation} Thus, we can get: \begin{equation} \max{\alpha,v<0} \left{ \sum_{i=1}^{m_2} [v_i\frac{\xi_i^2}{2\sigma^2} - g_{\theta}(v{i})] \right} \end{equation} which is equivalent to: \begin{equation} \max_{\alpha} \left{ \sum_{i=1}^{m_2} [\exp(-\frac{\xi_i^2}{2\sigma^2}) \frac{\xi_i^2}{2\sigma^2} - g_{\theta}(-\exp(-\frac{\xi_i^2}{2\sigma^2}))] \right} \end{equation} This can be optimized using the HQ algorithm , where we alternate between optimizing $\alpha$ and $v$. Specifically, given fixed $\alpha^{(s)}$, we can solve for $v_i^{(s)}$ using the same equation as before: \begin{equation} v_i^{(s)} = -\exp(-\frac{(\xi^{(s)})^2}{2\sigma^2}) \end{equation} then,we can get: \begin{equation}\label{1} \begin{aligned} \min{}C_{1}\sum_{i=1}^{m_{2}}\frac{\sigma^{2}}{2}[1-\exp(-\frac{\xi_{i}^{2}}{2\sigma^{2}})]^{\theta} = \frac{1}{2\sigma^2}\kappa^T \Omega^{\frac{1}{\theta}}\kappa \end{aligned} \end{equation} 其中 $\kappa$ 为长度为 $m_2$ 的向量,其第 $i$ 个元素为 $\xi_i$,$\Omega$ 为一个对角线矩阵,其第 $i$ 个对角线元素为 $-\theta \exp(-\frac{\xi_i^2}{2\sigma^2})$。

最新推荐

recommend-type

softmax的交叉熵导数推导.docx

这是因为 \( \frac{\exp(z_i)}{\exp(z_i)} = 1 \) 和 \( \frac{\exp(z_i) \cdot \exp(-z_i)}{\sum_j \exp(z_j)} = \hat{y}_i \cdot (\sum_j \exp(z_j) - \exp(z_i)) \)。然后,将这两个表达式结合起来: \[ \frac{\...
recommend-type

【java毕业设计】小型企业办公自动化系统的设计和开发源码(ssm+vue+mysql+说明文档+LW).zip

小型企业办公自动化系统在Eclipse环境中,使用Java语言进行编码,使用Mysql创建数据表保存本系统产生的数据。系统可以提供信息显示和相应服务,其管理员管理部门经理,管理总经理,管理员工和员工留言以及员工工资,管理内部邮件,管理审批流程,管理离职申请。部门经理给员工发放工资,审核并回复员工留言,管理员工工资,审核员工的离职申请信息,查询和下载内部邮件以及审批流程。总经理查询下载内部邮件和审批流程,审核员工离职申请,查询员工工资,查询员工和部门经理。员工发布留言,发布内部邮件,发布离职申请,查询通知公告和审批流程,查看员工本人工资。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
recommend-type

基于JAVA+SpringBoot+Vue+MySQL的智慧草莓基地管理系统 源码+数据库+论文(高分毕业设计).zip

项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:maven 数据库工具:navicat
recommend-type

WordPress作为新闻管理面板的实现指南

资源摘要信息: "使用WordPress作为管理面板" WordPress,作为当今最流行的开源内容管理系统(CMS),除了用于搭建网站、博客外,还可以作为一个功能强大的后台管理面板。本示例展示了如何利用WordPress的后端功能来管理新闻或帖子,将WordPress用作组织和发布内容的管理面板。 首先,需要了解WordPress的基本架构,包括它的数据库结构和如何通过主题和插件进行扩展。WordPress的核心功能已经包括文章(帖子)、页面、评论、分类和标签的管理,这些都可以通过其自带的仪表板进行管理。 在本示例中,WordPress被用作一个独立的后台管理面板来管理新闻或帖子。这种方法的好处是,WordPress的用户界面(UI)友好且功能全面,能够帮助不熟悉技术的用户轻松管理内容。WordPress的主题系统允许用户更改外观,而插件架构则可以扩展额外的功能,比如表单生成、数据分析等。 实施该方法的步骤可能包括: 1. 安装WordPress:按照标准流程在指定目录下安装WordPress。 2. 数据库配置:需要修改WordPress的配置文件(wp-config.php),将数据库连接信息替换为当前系统的数据库信息。 3. 插件选择与定制:可能需要安装特定插件来增强内容管理的功能,或者对现有的插件进行定制以满足特定需求。 4. 主题定制:选择一个适合的WordPress主题或者对现有主题进行定制,以实现所需的视觉和布局效果。 5. 后端访问安全:由于将WordPress用于管理面板,需要考虑安全性设置,如设置强密码、使用安全插件等。 值得一提的是,虽然WordPress已经内置了丰富的管理功能,但在企业级应用中,还需要考虑性能优化、安全性增强、用户权限管理等方面。此外,由于WordPress主要是作为内容发布平台设计的,将其作为管理面板可能需要一定的定制工作以确保满足特定的业务需求。 【PHP】标签意味着在实现该示例时,需要使用PHP编程语言。WordPress本身是由PHP语言开发的,因此开发者可能需要具备PHP开发能力,或至少能够理解PHP代码基础,以便对WordPress进行定制和扩展。 最后,【压缩包子文件的文件名称列表】中的"dctb-wp-as-admin-panel-master"暗示了这是一个存放所有相关文件的主目录,包括源代码、配置文件、模板文件、资源文件等,这些文件是安装和运行WordPress管理面板所必需的。在实际部署时,开发者需要上传这些文件到服务器,按照文档说明进行配置和安装。 总之,本示例提供了一个通过WordPress来搭建一个简单新闻或帖子管理系统的思路,展示了如何利用现有的开源工具来实现特定的业务需求。开发者需要有相应的PHP和WordPress知识,以及对网络安全和性能优化的基本了解。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

函数与模块化编程宝典:J750编程高效之路

![函数与模块化编程宝典:J750编程高效之路](https://github.blog/wp-content/uploads/2021/12/python-intermediate-update.png?resize=1024%2C494) 参考资源链接:[泰瑞达J750设备编程基础教程](https://wenku.csdn.net/doc/6412b472be7fbd1778d3f9e1?spm=1055.2635.3001.10343) # 1. 函数与模块化编程基础 ## 1.1 编程中的函数基础 函数是编程的基础构件,它允许将代码块组织成可重复使用的组件。在函数中封装特定的逻辑
recommend-type

用C语言求有4个圆塔,圆心分别为(2,2),(2,-2),(-2,2),(-2,-2)圆半径为1, 这4个塔的高度为10m 塔以外无建筑物接输入任意点的坐标 求该点的建筑高度(塔外的高度为零)的程序

在C语言中,你可以编写一个简单的函数来解决这个问题。首先,你需要确定每个圆是否包含了给定的点。如果包含,则返回塔高10米,如果不包含则返回0。这里提供一个基本的伪代码思路: ```c #include <stdio.h> #include <math.h> // 定义圆的结构体 typedef struct { double x, y; // 圆心坐标 int radius; // 半径 } Circle; // 函数判断点是否在圆内 int is_point_in_circle(Circle circle, double px, double py) { d
recommend-type

NPC_Generator:使用Ruby打造的游戏角色生成器

资源摘要信息:"NPC_Generator是一个专门为角色扮演游戏(RPG)或模拟类游戏设计的角色生成工具,它允许游戏开发者或者爱好者快速创建非玩家角色(NPC)并赋予它们丰富的背景故事、外观特征以及可能的行为模式。NPC_Generator的开发使用了Ruby编程语言,Ruby以其简洁的语法和强大的编程能力在脚本编写和小型项目开发中十分受欢迎。利用Ruby编写的NPC_Generator可以集成到游戏开发流程中,实现自动化生成NPC,极大地节省了手动设计每个NPC的时间和精力,提升了游戏内容的丰富性和多样性。" 知识点详细说明: 1. NPC_Generator的用途: NPC_Generator是用于游戏角色生成的工具,它能够帮助游戏设计师和玩家创建大量的非玩家角色(Non-Player Characters,简称NPC)。在RPG或模拟类游戏中,NPC是指在游戏中由计算机控制的虚拟角色,它们与玩家角色互动,为游戏世界增添真实感。 2. NPC生成的关键要素: - 角色背景故事:每个NPC都应该有自己的故事背景,这些故事可以是关于它们的过去,它们为什么会在游戏中出现,以及它们的个性和动机等。 - 外观特征:NPC的外观包括性别、年龄、种族、服装、发型等,这些特征可以由工具随机生成或者由设计师自定义。 - 行为模式:NPC的行为模式决定了它们在游戏中的行为方式,比如友好、中立或敌对,以及它们可能会执行的任务或对话。 3. Ruby编程语言的优势: - 简洁的语法:Ruby语言的语法非常接近英语,使得编写和阅读代码都变得更加容易和直观。 - 灵活性和表达性:Ruby语言提供的大量内置函数和库使得开发者可以快速实现复杂的功能。 - 开源和社区支持:Ruby是一个开源项目,有着庞大的开发者社区和丰富的学习资源,有利于项目的开发和维护。 4. 项目集成与自动化: NPC_Generator的自动化特性意味着它可以与游戏引擎或开发环境集成,为游戏提供即时的角色生成服务。自动化不仅可以提高生成NPC的效率,还可以确保游戏中每个NPC都具备独特的特性,使游戏世界更加多元和真实。 5. 游戏开发的影响: NPC_Generator的引入对游戏开发产生以下影响: - 提高效率:通过自动化的角色生成,游戏开发团队可以节约大量时间和资源,专注于游戏设计的其他方面。 - 增加多样性:自动化的工具可以根据不同的参数生成大量不同的NPC,为游戏世界带来更多的故事线和交互可能性。 - 玩家体验:丰富的NPC角色能够提升玩家的沉浸感,使得玩家在游戏中的体验更加真实和有吸引力。 6. Ruby在游戏开发中的应用: 虽然Ruby不是游戏开发中最常用的编程语言,但其在小型项目、原型设计、脚本编写等领域有其独特的优势。一些游戏开发工具和框架支持Ruby,如Ruby on Rails可以在Web游戏开发中发挥作用,而一些游戏开发社区也在探索Ruby的更多潜力。 7. NPC_Generator的扩展性和维护: 为了确保NPC_Generator能够长期有效地工作,它需要具备良好的扩展性和维护性。这意味着工具应该支持插件或模块的添加,允许社区贡献新功能,并且代码应该易于阅读和修改,以便于未来的升级和优化。 综上所述,NPC_Generator是一款利用Ruby编程语言开发的高效角色生成工具,它不仅提高了游戏开发的效率,而且通过提供丰富多样的NPC角色增加了游戏的深度和吸引力。随着游戏开发的不断发展,此类自动化工具将变得更加重要,而Ruby作为一种支持快速开发的编程语言,在这一领域有着重要的应用前景。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

流程控制与循环结构详解:J750编程逻辑构建指南

![流程控制与循环结构详解:J750编程逻辑构建指南](https://d1g9li960vagp7.cloudfront.net/wp-content/uploads/2018/10/While-Schleife_WP_04-1024x576.png) 参考资源链接:[泰瑞达J750设备编程基础教程](https://wenku.csdn.net/doc/6412b472be7fbd1778d3f9e1?spm=1055.2635.3001.10343) # 1. 流程控制与循环结构的编程基础 编程中,流程控制和循环结构是构建有效程序逻辑的核心元素。本章将带你从基础概念出发,逐步深入理解