ros::Publisher.publish 参数介绍

时间: 2023-08-02 21:08:23 浏览: 295
在ROS中,`ros::Publisher`是用于发布消息到话题(topic)的类。它的`publish`函数有一个参数,即要发布的消息。该参数的类型应该与该发布者发布的话题(topic)的消息类型相匹配。 例如,如果我们有一个发布者发布一个类型为`std_msgs::String`的话题`/chatter`,那么我们可以使用以下方式来发布消息: ```cpp ros::Publisher pub = n.advertise<std_msgs::String>("/chatter", 1000); std_msgs::String msg; msg.data = "Hello, world!"; pub.publish(msg); ``` 这里,参数`msg`是要发布的消息,它的类型为`std_msgs::String`,`publish`函数将消息发布到`/chatter`话题上。注意,这里的`msg`对象的具体内容可以根据需要进行修改。
相关问题

#include <ros/ros.h> #include <geometry_msgs/Twist.h> #include <math.h> int main(int argc, char** argv) { ros::init(argc, argv, "turtle_triangle"); ros::NodeHandle node; // 创建一个发布器,用于发布速度消息 ros::Publisher pub = node.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel", 1000); // 设置循环频率,每秒10次 ros::Rate rate(10); // 初始化速度消息 geometry_msgs::Twist vel_msg; vel_msg.linear.x = 0; vel_msg.linear.y = 0; vel_msg.linear.z = 0; vel_msg.angular.x = 0; vel_msg.angular.y = 0; vel_msg.angular.z = 0; // 设定三角形边长和角度 double side_length = 1.0; double angle = M_PI / 3.0; // 循环绘制三角形 for (int i = 0; i < 3; i++) { // 线速度为正,角速度为0,直行一段距离 vel_msg.linear.x = side_length; pub.publish(vel_msg); double t0 = ros::Time::now().toSec(); double current_distance = 0.0; while (current_distance < side_length) { pub.publish(vel_msg); double t1 = ros::Time::now().toSec(); current_distance = vel_msg.linear.x * (t1 - t0); } // 线速度为0,角速度为正,原地旋转一定角度 vel_msg.linear.x = 0; vel_msg.angular.z = angle; pub.publish(vel_msg); double t2 = ros::Time::now().toSec(); double current_angle = 0.0; while (current_angle < angle) { pub.publish(vel_msg); double t3 = ros::Time::now().toSec(); current_angle = vel_msg.angular.z * (t3 - t2); } // 重置角速度 vel_msg.angular.z = 0; } return 0; }改成循环运行三次

可以将代码修改为: ``` #include <ros/ros.h> #include <geometry_msgs/Twist.h> #include <math.h> int main(int argc, char** argv) { ros::init(argc, argv, "turtle_triangle"); ros::NodeHandle node; // 创建一个发布器,用于发布速度消息 ros::Publisher pub = node.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel", 1000); // 设置循环频率,每秒10次 ros::Rate rate(10); // 初始化速度消息 geometry_msgs::Twist vel_msg; vel_msg.linear.x = 0; vel_msg.linear.y = 0; vel_msg.linear.z = 0; vel_msg.angular.x = 0; vel_msg.angular.y = 0; vel_msg.angular.z = 0; // 设定三角形边长和角度 double side_length = 1.0; double angle = M_PI / 3.0; // 循环绘制三角形,运行三次 for (int j = 0; j < 3; j++) { for (int i = 0; i < 3; i++) { // 线速度为正,角速度为0,直行一段距离 vel_msg.linear.x = side_length; pub.publish(vel_msg); double t0 = ros::Time::now().toSec(); double current_distance = 0.0; while (current_distance < side_length) { pub.publish(vel_msg); double t1 = ros::Time::now().toSec(); current_distance = vel_msg.linear.x * (t1 - t0); } // 线速度为0,角速度为正,原地旋转一定角度 vel_msg.linear.x = 0; vel_msg.angular.z = angle; pub.publish(vel_msg); double t2 = ros::Time::now().toSec(); double current_angle = 0.0; while (current_angle < angle) { pub.publish(vel_msg); double t3 = ros::Time::now().toSec(); current_angle = vel_msg.angular.z * (t3 - t2); } // 重置角速度 vel_msg.angular.z = 0; } } return 0; } ``` 这样就可以让代码循环运行三次,绘制出三个等边三角形了。

#include "ros/ros.h" #include "geometry_msgs/Twist.h" int main(int argc, char * argv[]) { ros::init(argc,argv,"pub"); ros::NodeHandle nodeHandle; ros::Publisher publisher = nodeHandle.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",10); geometry_msgs::Twist message; //线速度————控制前后移动,正数前进,负数后退 message.linear.x = 2.0;//线速度 message.linear.y = 0.0; message.linear.z = 0.0; //角速度————控制旋转,正数顺时针,负数逆时针 message.angular.x = 0.0; message.angular.y = 0.0; message.angular.z = 1.0; ros::Rate rate(1); while(ros::ok()) { publisher.publish(message); rate.sleep(); } return 0; }这个代码怎么修改成让乌龟走正方形

要让乌龟走正方形,需要让它先向前走一段距离,然后右转90度,再向前走一段距离,再右转90度,如此往复。可以通过改变线速度和角速度来实现这个过程。以下是修改后的代码: ``` #include "ros/ros.h" #include "geometry_msgs/Twist.h" int main(int argc, char * argv[]) { ros::init(argc,argv,"pub"); ros::NodeHandle nodeHandle; ros::Publisher publisher = nodeHandle.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel",10); geometry_msgs::Twist message; // 设置线速度和角速度 double linear_speed = 1.0; // 线速度 double angular_speed = 1.0; // 角速度 // 首先向前走一段距离 message.linear.x = linear_speed; message.angular.z = 0.0; ros::Rate rate(1); int count = 0; while(count < 4) { // 循环4次,每次走直线和转弯 // 走直线 double t1 = ros::Time::now().toSec(); double distance = 0.0; while(distance < 1.0) { // 直线走1米 publisher.publish(message); double t2 = ros::Time::now().toSec(); distance = linear_speed * (t2-t1); } message.linear.x = 0.0; // 停止走直线 // 右转90度 message.angular.z = angular_speed; double t3 = ros::Time::now().toSec(); double angle = 0.0; while(angle < 1.57) { // 转弯90度 publisher.publish(message); double t4 = ros::Time::now().toSec(); angle = angular_speed * (t4-t3); } message.angular.z = 0.0; // 停止转弯 count++; } return 0; } ``` 在这个代码中,首先设置了线速度和角速度的值。然后,在一个循环中,先让乌龟向前走一段距离,然后通过控制时间和角速度来让它右转90度。接着,重复这个过程,让乌龟走完一个正方形。
阅读全文

相关推荐

ros::init(argc, argv, "kitti_helper"); ros::NodeHandle n("~"); std::string dataset_folder, sequence_number, output_bag_file; n.getParam("dataset_folder", dataset_folder); n.getParam("sequence_number", sequence_number); std::cout << "Reading sequence " << sequence_number << " from " << dataset_folder << '\n'; bool to_bag; n.getParam("to_bag", to_bag); if (to_bag) n.getParam("output_bag_file", output_bag_file); int publish_delay; n.getParam("publish_delay", publish_delay); publish_delay = publish_delay <= 0 ? 1 : publish_delay; ros::Publisher pub_laser_cloud = n.advertise<sensor_msgs::PointCloud2>("/velodyne_points", 2); image_transport::ImageTransport it(n); image_transport::Publisher pub_image_left = it.advertise("/image_left", 2); image_transport::Publisher pub_image_right = it.advertise("/image_right", 2); ros::Publisher pubOdomGT = n.advertise ("/odometry_gt", 5); nav_msgs::Odometry odomGT; odomGT.header.frame_id = "/camera_init"; odomGT.child_frame_id = "/ground_truth"; ros::Publisher pubPathGT = n.advertise ("/path_gt", 5); nav_msgs::Path pathGT; pathGT.header.frame_id = "/camera_init"; std::string timestamp_path = "sequences/" + sequence_number + "/times.txt"; std::ifstream timestamp_file(dataset_folder + timestamp_path, std::ifstream::in); std::string ground_truth_path = "results/" + sequence_number + ".txt"; std::ifstream ground_truth_file(dataset_folder + ground_truth_path, std::ifstream::in); rosbag::Bag bag_out; if (to_bag) bag_out.open(output_bag_file, rosbag::bagmode::Write); Eigen::Matrix3d R_transform; R_transform << 0, 0, 1, -1, 0, 0, 0, -1, 0; Eigen::Quaterniond q_transform(R_transform); std::string line; std::size_t line_num = 0; ros::Rate r(10.0 / publish_delay); 解释一下

最新推荐

recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

586befcf3e78455eb3b5359d7500cc97.JPG

586befcf3e78455eb3b5359d7500cc97.JPG
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自