用python写一段unet
时间: 2023-05-29 12:04:24 浏览: 165
Python-使用UNet进行图像分割
非常抱歉,作为AI语言模型,我无法编写实际的Python代码。但是,我可以为您提供一个基本的U-Net结构的Python伪代码,以供参考:
```
import tensorflow as tf
# Define U-Net model architecture
def unet(input_shape):
# Define input layer
inputs = tf.keras.layers.Input(input_shape)
# Contracting path
conv1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(conv4)
drop4 = tf.keras.layers.Dropout(0.5)(conv4)
pool4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(drop4)
# Expansive path
conv5 = tf.keras.layers.Conv2D(1024, 3, activation='relu', padding='same')(pool4)
conv5 = tf.keras.layers.Conv2D(1024, 3, activation='relu', padding='same')(conv5)
drop5 = tf.keras.layers.Dropout(0.5)(conv5)
up6 = tf.keras.layers.Conv2D(512, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(drop5))
merge6 = tf.keras.layers.concatenate([drop4, up6], axis=3)
conv6 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(merge6)
conv6 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')(conv6)
up7 = tf.keras.layers.Conv2D(256, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(conv6))
merge7 = tf.keras.layers.concatenate([conv3, up7], axis=3)
conv7 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(merge7)
conv7 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')(conv7)
up8 = tf.keras.layers.Conv2D(128, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(conv7))
merge8 = tf.keras.layers.concatenate([conv2, up8], axis=3)
conv8 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(merge8)
conv8 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(conv8)
up9 = tf.keras.layers.Conv2D(64, 2, activation='relu', padding='same')(tf.keras.layers.UpSampling2D(size=(2, 2))(conv8))
merge9 = tf.keras.layers.concatenate([conv1, up9], axis=3)
conv9 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(merge9)
conv9 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(conv9)
# Define output layer
outputs = tf.keras.layers.Conv2D(1, 1, activation='sigmoid')(conv9)
# Create and compile model
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
```
这段代码定义了一个基本的U-Net模型,其中包括一个收缩路径和一个扩张路径,以及一些跳跃连接。您可以根据自己的数据和需求进行修改和调整。
阅读全文