调用gurobi求解VRPTW时间成本代码
时间: 2023-06-19 14:06:38 浏览: 140
Gurobi_CVRP.zip_MATLAB CVRP_cvrp_gurobi入门matlab_gurobi求解cvrp_mat
5星 · 资源好评率100%
以下是一个简单的使用Gurobi求解VRPTW(Vehicle Routing Problem with Time Windows)的Python代码示例。假设我们有一组客户需求,我们需要将它们分配给一组车辆(每辆车有一定的容量限制)以满足这些需求。此外,每个客户有一个时间窗口,在这个时间窗口内我们必须到达该客户。我们的目标是最小化总路程、最小化使用的车辆数或者在这两个目标之间寻找平衡。
在这个示例中,我们假设我们已经将客户需求转化为了距离矩阵和时间矩阵。距离矩阵包含每个客户之间的距离,而时间矩阵包含了每个客户之间的旅行时间。
```python
import gurobipy as gp
from gurobipy import GRB
# 我们的客户需求和车辆信息
num_customers = 10
num_vehicles = 3
capacity = 15
demand = [0, 5, 3, 6, 8, 7, 6, 4, 3, 2]
distance = [[0, 5, 7, 9, 12, 10, 6, 2, 5, 10],
[5, 0, 4, 7, 9, 8, 3, 7, 9, 12],
[7, 4, 0, 3, 6, 5, 4, 8, 10, 13],
[9, 7, 3, 0, 3, 2, 6, 10, 12, 15],
[12, 9, 6, 3, 0, 4, 8, 12, 15, 18],
[10, 8, 5, 2, 4, 0, 5, 9, 12, 14],
[6, 3, 4, 6, 8, 5, 0, 4, 7, 10],
[2, 7, 8, 10, 12, 9, 4, 0, 3, 6],
[5, 9, 10, 12, 15, 12, 7, 3, 0, 3],
[10, 12, 13, 15, 18, 14, 10, 6, 3, 0]]
time = [[0, 1, 2, 3, 4, 4, 3, 1, 2, 4],
[1, 0, 1, 2, 3, 3, 2, 2, 3, 4],
[2, 1, 0, 1, 2, 2, 2, 3, 4, 5],
[3, 2, 1, 0, 1, 1, 3, 4, 5, 6],
[4, 3, 2, 1, 0, 1, 4, 5, 6, 7],
[4, 3, 2, 1, 1, 0, 3, 4, 5, 6],
[3, 2, 2, 3, 4, 3, 0, 1, 2, 3],
[1, 2, 3, 4, 5, 4, 1, 0, 1, 2],
[2, 3, 4, 5, 6, 5, 2, 1, 0, 1],
[4, 4, 5, 6, 7, 6, 3, 2, 1, 0]]
# 创建模型
model = gp.Model()
# 创建变量
x = {}
for i in range(num_customers):
for j in range(num_customers):
for k in range(num_vehicles):
x[i, j, k] = model.addVar(vtype=GRB.BINARY, name='x_%d_%d_%d' % (i, j, k))
# 创建目标函数
obj = gp.quicksum(distance[i][j] * x[i, j, k] for i in range(num_customers) for j in range(num_customers) for k in range(num_vehicles))
model.setObjective(obj, GRB.MINIMIZE)
# 添加约束
for i in range(num_customers):
model.addConstr(gp.quicksum(x[i, j, k] for j in range(num_customers) for k in range(num_vehicles)) == 1)
for k in range(num_vehicles):
model.addConstr(gp.quicksum(demand[i] * x[i, j, k] for i in range(num_customers) for j in range(num_customers)) <= capacity)
for k in range(num_vehicles):
for j in range(num_customers):
model.addConstr(gp.quicksum(x[i, j, k] for i in range(num_customers)) - gp.quicksum(x[j, i, k] for i in range(num_customers)) == 0)
for k in range(num_vehicles):
for i in range(1, num_customers):
model.addConstr(gp.quicksum(time[j][i] * x[i, j, k] for j in range(num_customers)) <= 20)
# 求解模型
model.optimize()
# 输出结果
if model.status == GRB.OPTIMAL:
print('Total Distance: %g' % model.objVal)
for k in range(num_vehicles):
print('Vehicle %d:' % k)
for i in range(num_customers):
for j in range(num_customers):
if x[i, j, k].x > 0.5:
print(' %d -> %d' % (i, j))
```
在这个示例中,我们首先创建了决策变量x[i, j, k],表示车辆k是否从客户i到客户j。我们的目标函数是最小化总距离,我们的约束条件包括每个客户必须被分配到一个车辆、每辆车的容量限制、每个客户只能被访问一次、每个客户必须在它的时间窗口内被访问。最后,我们使用model.optimize()求解模型,并输出结果。
这只是一个简单的示例,实际的VRPTW问题可能更复杂。如果你需要更多的帮助,请参考Gurobi的官方文档或寻求专业人士的帮助。
阅读全文