有 n 件物品和一个容量是 v 的背包。每件物品只能使用一次。 第 i 件物品的体积是 vi,价值是 wi。 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。
时间: 2023-06-05 18:47:21 浏览: 277
已知有n中物品和一个可容纳M质量的背包,每种物品i的质量为Wi,假定将物品i放入背包,可以得到Pi的效益,求使背包中物品总效益最大的背包方案。
5星 · 资源好评率100%
这是一个经典的背包问题,需要使用动态规划算法来解决。具体思路是:定义一个二维数组dp[i][j],表示前i件物品放入容量为j的背包中所能获得的最大价值。则状态转移方程为:
dp[i][j] = max(dp[i-1][j], dp[i-1][j-vi]+wi)
其中,dp[i-1][j]表示不放第i件物品时的最大价值,dp[i-1][j-vi]+wi表示放第i件物品时的最大价值。最终的答案为dp[n][v],即前n件物品放入容量为v的背包中所能获得的最大价值。
需要注意的是,这里的i和j都是从1开始的,而不是从开始。同时,为了方便计算,可以将物品的体积和价值都乘以一个大于1的常数,使得它们变成整数。
阅读全文