用C++用龙贝格方法计算∫_0^0.8▒〖e^(-x^2 ) dx〗
时间: 2024-11-06 07:20:31 浏览: 35
龙贝格积分法-lte-v2x车联网技术、标准与应用_通信
龙贝格积分方法是一种数值积分算法,主要用于高精度地估计函数的定积分。在C++中,我们可以利用四阶龙贝格规则(一种变型的辛普森法则)来近似计算给定区间内的积分。下面是基本步骤:
1. 定义一个函数,比如 `exp_minus_x_squared`,它接受 x 并返回 e^(-x^2) 的值。
2. 定义一个数组 `weights` 存储龙贝格节点的权重系数。
3. 定义一个 `integrate` 函数,接收分段数 `n` 和积分上限 `a`(这里是 0.8),并递归地应用龙贝格积分公式。
以下是简化版的示例代码:
```cpp
#include <cmath>
#include <vector>
double exp_minus_x_squared(double x) {
return std::exp(-x * x);
}
std::vector<double> weights(int n) {
std::vector<double> w(n + 1);
double t = 1. / (4 * n);
for (int i = 0; i <= n; ++i) {
if (i % 2 == 0)
w[i] = t;
else
w[i] = 4 * t;
}
return w;
}
double trapezoidal_rule(double a, double b, int n, double (*f)(double)) {
double integral = f(a) + f(b);
double h = (b - a) / n;
for (int i = 1; i < n; ++i)
integral += f(a + i * h) + f(a + (i + 1) * h);
integral *= h / 2;
return integral;
}
double romberg(int m, double a, double b, int n, double (*f)(double), const std::vector<double>& weights) {
double Tn = trapezoidal_rule(a, b, n, f);
double Rm = 0;
for (int j = 0; j <= m; ++j) {
double Sn = Tn;
for (int k = 0; k <= n - (2 * j); ++k)
Sn /= 2;
Rm += weights[j] * Sn;
}
return Rm;
}
// 使用龙贝格方法计算积分
double integrate_e_exp_minus_x_sqr(double a, double b, int max_depth, int n) {
double result = romberg(0, a, b, n, exp_minus_x_squared, weights(max_depth));
return result;
}
int main() {
double lower_limit = 0;
double upper_limit = 0.8;
int max_depth = 5; // 龙贝格规则深度
int n_segments = 10; // 每层的节点数
double integral_approximation = integrate_e_exp_minus_x_sqr(lower_limit, upper_limit, max_depth, n_segments);
std::cout << "∫_{" << lower_limit << "}^{" << upper_limit << "} e^(-x^2) dx ≈ " << integral_approximation << "\n";
阅读全文