使用MATLAB实现:双极性不归零码通过高斯白噪声信道后的误码率性能仿真,画出误码率曲线
时间: 2023-12-11 15:03:47 浏览: 249
双极性不归零码(Bipolar Non-Return-to-Zero,BNRZ)是一种常用的数字基带调制方式。在传输过程中,信号可能会受到噪声的干扰。为了评估信道的性能,我们需要对BNRZ码通过高斯白噪声信道后的误码率进行仿真,并画出误码率曲线。
MATLAB提供了通信系统工具箱(Communications System Toolbox),可以方便地进行数字通信系统的建模和仿真。下面我们将使用该工具箱实现BNRZ码通过高斯白噪声信道后的误码率性能仿真。
首先,我们需要生成BNRZ码序列。假设我们要传输的二进制数据为10101010,对应的BNRZ码序列为+1 -1 +1 -1 +1 -1 +1 -1。
```matlab
% 生成BNRZ码序列
data = [1 -1 1 -1 1 -1 1 -1];
```
接下来,我们需要将BNRZ码序列调制成基带信号,并添加高斯白噪声。
```matlab
% 调制成基带信号
Fs = 1000; % 采样频率
T = 1/Fs; % 采样间隔
t = 0:T:7*T;
baseband = kron(data, ones(1, Fs/2));
signal = baseband .* cos(2*pi*100*t);
% 添加高斯白噪声
SNR = 10; % 信噪比
noisy_signal = awgn(signal, SNR, 'measured');
```
在添加噪声后,我们需要将接收到的信号解调,并对解调后的信号进行判决,以得到误码率。
```matlab
% 解调
received = noisy_signal .* cos(2*pi*100*t);
[b, a] = butter(4, 2*pi*50/Fs);
received_filtered = filter(b, a, received);
received_downsampled = downsample(received_filtered, Fs/2);
% 判决
decoded = received_downsampled > 0;
errors = sum(xor(decoded, data));
BER = errors/length(data);
```
最后,我们可以将整个过程封装成一个函数,并重复执行多次,以得到不同信噪比下的误码率。
```matlab
function [SNR, BER] = bnrz_simulation()
data = [1 -1 1 -1 1 -1 1 -1];
Fs = 1000;
T = 1/Fs;
t = 0:T:7*T;
baseband = kron(data, ones(1, Fs/2));
signal = baseband .* cos(2*pi*100*t);
BER = zeros(1, 11);
SNR = 0:10;
for i = 1:length(SNR)
noisy_signal = awgn(signal, SNR(i), 'measured');
received = noisy_signal .* cos(2*pi*100*t);
[b, a] = butter(4, 2*pi*50/Fs);
received_filtered = filter(b, a, received);
received_downsampled = downsample(received_filtered, Fs/2);
decoded = received_downsampled > 0;
errors = sum(xor(decoded, data));
BER(i) = errors/length(data);
end
end
```
最后,我们可以调用该函数,获得误码率曲线并进行绘制。
```matlab
[SNR, BER] = bnrz_simulation();
semilogy(SNR, BER, 'o-');
xlabel('SNR (dB)');
ylabel('BER');
title('BNRZ over AWGN Channel');
grid on;
```
运行以上代码即可得到BNRZ码通过高斯白噪声信道后的误码率性能仿真结果。
阅读全文