单链表一元多项式相加

时间: 2023-10-20 08:06:53 浏览: 149
单链表一元多项式相加的算法可以按照以下步骤进行实现: 1. 创建三个带头结点的单链表,分别表示输入的两个一元多项式和结果的一元多项式。 2. 从键盘依次输入两个一元多项式的系数和指数,并将它们存入两个链表中。 3. 遍历第一个链表(A链表),对于每一个节点,再遍历第二个链表(B链表),找到指数相等的节点。 4. 如果找到了指数相等的节点,将这两个节点的系数相加,并将结果存入一个新的节点,然后将该节点插入到结果链表中。 5. 删除被相加过的节点。 6. 重复步骤3-5,直到遍历完A链表和B链表。 7. 得到一个求和后的结果链表,即表示两个一元多项式相加的结果。
相关问题

c语言单链表实现一元多项式相加

好的,我可以回答这个问题。单链表可以作为存储一元多项式的一种数据结构。相加两个一元多项式的方法是将两个一元多项式中相同次数的项相加,得到新的一元多项式。 具体步骤如下: 1. 定义一个单链表数据结构来存储一元多项式。 2. 读入两个一元多项式并分别存储到两个单链表中。 3. 遍历两个链表,将相同次数的项相加,将结果存储到一个新的链表中。 4. 如果一个链表遍历完了而另一个链表还有剩余的项,将这些项直接添加到新链表中。 5. 输出新链表中的每一项,即为相加的结果。 代码实现可参考下面示例: ``` #include <stdio.h> #include <stdlib.h> typedef struct node { int coeff; //系数 int expn; //指数 struct node *next; } Node; Node* CreateList(); //创建链表 Node* InputPoly(); //输入一元多项式 void AddPoly(Node*, Node*, Node*); //相加两个一元多项式 void PrintPoly(Node*); //输出一元多项式 int main() { Node *A, *B, *C; A = InputPoly(); B = InputPoly(); C = CreateList(); AddPoly(A, B, C); PrintPoly(C); return 0; } Node* CreateList() { Node *L = (Node*)malloc(sizeof(Node)); L->next = NULL; return L; } Node* InputPoly() { Node *L = CreateList(); Node *r = L; int n, coeff, expn; printf("请输入一元多项式的项数:"); scanf("%d", &n); printf("请按照指数递减的顺序输入各项系数和指数:\n"); while(n--) { Node *p = (Node*)malloc(sizeof(Node)); scanf("%d%d", &coeff, &expn); p->coeff = coeff; p->expn = expn; r->next = p; r = p; } r->next = NULL; return L; } void AddPoly(Node *A, Node *B, Node *C) { Node *pa = A->next, *pb = B->next; Node *pc = C; while(pa && pb) { Node *p = (Node*)malloc(sizeof(Node)); if(pa->expn == pb->expn) { p->coeff = pa->coeff + pb->coeff; p->expn = pa->expn; pa = pa->next; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else if(pa->expn > pb->expn) { p->coeff = pa->coeff; p->expn = pa->expn; pa = pa->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else { p->coeff = pb->coeff; p->expn = pb->expn; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } } pc->next = pa ? pa : pb; } void PrintPoly(Node *L) { Node *p = L->next; while(p) { printf("%dX^%d", p->coeff, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); } ```

一元多项式相加c语言

一元多项式相加是指将两个一元多项式相加得到一个新的一元多项式。在C语言中,可以使用单链表来实现一元多项式的存储和相加。具体实现步骤如下: 1. 定义一个结构体来表示一元多项式的每一项,包括系数和指数两个成员变量。 2. 定义一个单链表结构体来存储一元多项式,每个节点存储一项的系数和指数。 3. 编写函数来创建一元多项式,输入时逐项、按顺序输入一元多项式的系数、指数,输入系数为0时表述输入结束。 4. 编写函数来实现一元多项式相加,遍历两个链表,将相同指数的项相加,将结果存储在一个新的链表中。 5. 编写函数来输出一元多项式,遍历链表,按照指数从高到低的顺序输出每一项。 下面是一个简单的C语言实现示例: ``` #include <stdio.h> #include <stdlib.h> // 定义一元多项式项的结构体 typedef struct PolyNode { int coef; // 系数 int expon; // 指数 struct PolyNode *next; } PolyNode, *Polynomial; // 创建一元多项式 Polynomial createPoly() { Polynomial p, rear, t; int c, e; p = (PolyNode *)malloc(sizeof(PolyNode)); p->next = NULL; rear = p; scanf("%d %d", &c, &e); while (c != 0) { t = (PolyNode *)malloc(sizeof(PolyNode)); t->coef = c; t->expon = e; t->next = NULL; rear->next = t; rear = t; scanf("%d %d", &c, &e); } return p; } // 一元多项式相加 Polynomial addPoly(Polynomial p1, Polynomial p2) { Polynomial front, rear, temp; int sum; rear = (PolyNode *)malloc(sizeof(PolyNode)); front = rear; while (p1 && p2) { if (p1->expon > p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } else if (p1->expon < p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } else { sum = p1->coef + p2->coef; if (sum != 0) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = sum; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; } p1 = p1->next; p2 = p2->next; } } while (p1) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } while (p2) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } rear->next = NULL; temp = front; front = front->next; free(temp); return front; } // 输出一元多项式 void printPoly(Polynomial p) { if (!p) { printf("0 0\n"); return; } while (p) { printf("%d %d", p->coef, p->expon); p = p->next; if (p) { printf(" "); } else { printf("\n"); } } } int main() { Polynomial p1, p2, p3; p1 = createPoly(); p2 = createPoly(); p3 = addPoly(p1, p2); printPoly(p3); return 0; } ```

相关推荐

最新推荐

recommend-type

数据结构实验报告之一元多项式求和(链表)报告2.doc

在本实验中,一元多项式被表示为一个单链表,链表的每个节点包含两个关键部分:系数(coef)和指数(exp)。这样的结构允许我们轻松地表示不同指数的项,因为每个节点可以代表一个单独的项,如ax^n。节点结构定义...
recommend-type

一元多项式的计算问题----数据结构与算法

在本文中,我们将探讨一元多项式的计算问题,这是数据结构与算法领域的一个经典话题。该问题主要涉及如何高效地处理和运算两个一元多项式。首先,我们需要理解问题的分析和任务定义。 1. 问题分析: - 输入:用户...
recommend-type

一元多项式计算问题课程设计

【一元多项式计算问题课程设计】涉及到的主要知识点包括一元多项式的表示、排序、相加和相减操作,以及链表数据结构的应用。在计算机科学中,一元多项式通常用于数学运算和符号计算,这里我们将深入探讨这些概念。 ...
recommend-type

一元多项式求和问题的研究与实现

设计的目标是创建一个合理的数据结构来表示一元多项式,并实现高效的算法来执行相加操作。这个任务要求使用C++编程语言,使用带头结点的单链表来存储多项式。单链表是一种动态数据结构,允许在运行时添加或删除元素...
recommend-type

数据结构课程设计—用链表实现一元多项式计算器

* 在本课程设计中,使用带头结点的单链表存储一元多项式,多项式的项数存放在头结点中。 知识点3:一元多项式计算器 * 一元多项式计算器是指可以对一元多项式进行加、减、乘、除等运算的软件。 * 一元多项式计算器...
recommend-type

计算机系统基石:深度解析与优化秘籍

深入理解计算机系统(原书第2版)是一本备受推崇的计算机科学教材,由卡耐基梅隆大学计算机学院院长,IEEE和ACM双院院士推荐,被全球超过80所顶级大学选作计算机专业教材。该书被誉为“价值超过等重量黄金”的无价资源,其内容涵盖了计算机系统的核心概念,旨在帮助读者从底层操作和体系结构的角度全面掌握计算机工作原理。 本书的特点在于其起点低但覆盖广泛,特别适合大三或大四的本科生,以及已经完成基础课程如组成原理和体系结构的学习者。它不仅提供了对计算机原理、汇编语言和C语言的深入理解,还包含了诸如数字表示错误、代码优化、处理器和存储器系统、编译器的工作机制、安全漏洞预防、链接错误处理以及Unix系统编程等内容,这些都是提升程序员技能和理解计算机系统内部运作的关键。 通过阅读这本书,读者不仅能掌握系统组件的基本工作原理,还能学习到实用的编程技巧,如避免数字表示错误、优化代码以适应现代硬件、理解和利用过程调用、防止缓冲区溢出带来的安全问题,以及解决链接时的常见问题。这些知识对于提升程序的正确性和性能至关重要,使读者具备分析和解决问题的能力,从而在计算机行业中成为具有深厚技术实力的专家。 《深入理解计算机系统(原书第2版)》是一本既能满足理论学习需求,又能提供实践经验指导的经典之作,无论是对在校学生还是职业程序员,都是提升计算机系统知识水平的理想读物。如果你希望深入探究计算机系统的世界,这本书将是你探索之旅的重要伴侣。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率

![PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率](https://img-blog.csdn.net/20180928141511915?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzE0NzU5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. PHP数据库操作基础** PHP数据库操作是使用PHP语言与数据库交互的基础,它允许开发者存储、检索和管理数据。本章将介绍PHP数据库操作的基本概念和操作,为后续章节奠定基础。
recommend-type

vue-worker

Vue Worker是一种利用Web Workers技术的 Vue.js 插件,它允许你在浏览器的后台线程中运行JavaScript代码,而不影响主线程的性能。Vue Worker通常用于处理计算密集型任务、异步I/O操作(如文件读取、网络请求等),或者是那些需要长时间运行但不需要立即响应的任务。 通过Vue Worker,你可以创建一个新的Worker实例,并将Vue实例的数据作为消息发送给它。Worker可以在后台执行这些数据相关的操作,然后返回结果到主页面上,实现了真正的非阻塞用户体验。 Vue Worker插件提供了一个简单的API,让你能够轻松地在Vue组件中管理worker实例
recommend-type

《ThinkingInJava》中文版:经典Java学习宝典

《Thinking in Java》中文版是由知名编程作家Bruce Eckel所著的经典之作,这本书被广泛认为是学习Java编程的必读书籍。作为一本面向对象的编程教程,它不仅适合初学者,也对有一定经验的开发者具有启发性。本书的核心目标不是传授Java平台特定的理论,而是教授Java语言本身,着重于其基本语法、高级特性和最佳实践。 在内容上,《Thinking in Java》涵盖了Java 1.2时期的大部分关键特性,包括Swing GUI框架和新集合类库。作者通过清晰的讲解和大量的代码示例,帮助读者深入理解诸如网络编程、多线程处理、虚拟机性能优化以及与其他非Java代码交互等高级概念。书中提供了320个实用的Java程序,超过15000行代码,这些都是理解和掌握Java语言的宝贵资源。 作为一本获奖作品,Thinking in Java曾荣获1995年的Software Development Jolt Award最佳书籍大奖,体现了其在业界的高度认可。Bruce Eckel不仅是一位经验丰富的编程专家,还是C++领域的权威,他拥有20年的编程经历,曾在世界各地教授对象编程,包括C++和Java。他的著作还包括Thinking in C++,该书同样广受好评。 作者不仅是一位技术导师,还是一位教育家,他善于用易于理解的方式阐述复杂的编程概念,使读者能够领略到编程中的“智慧”。与其他Java教材相比,《Thinking in Java》以其成熟、连贯、严谨的风格,赢得了读者的一致赞誉,被誉为最全面且实例恰当的编程指南,是学习Java过程中不可或缺的参考资料。 此外,本书还提供了配套的CD,包含15小时的语音授课,以及可以从Bruce Eckel的官方网站www.BruceEckel.com免费获取的源码和电子版更新,确保读者能够跟随最新的技术发展保持同步。无论你是Java新手还是进阶者,《Thinking in Java》都是一次深入探索Java世界的重要旅程。