ros::Timer timer = nh.createTimer(ros::Duration(600), creat_callback);

时间: 2024-04-03 11:37:10 浏览: 15
这行代码创建了一个名为`timer`的ROS计时器,其周期为600秒(10分钟),并指定当计时器超时时调用名为`creat_callback`的回调函数。具体来说,这行代码首先使用ROS节点句柄`nh`的`createTimer`函数创建了一个计时器对象,并将其赋值给变量`timer`。该函数接受两个参数:第一个参数是一个`ros::Duration`对象,用于指定计时器的周期,这里是10分钟(600秒);第二个参数是一个回调函数指针,用于指定计时器超时时所执行的回调函数,这里是名为`creat_callback`的回调函数。当计时器超时时,ROS将调用`creat_callback`函数来执行回调操作。
相关问题

ros::Timer timer = nh.createTimer(ros::Duration(0), creat_callback);

这行代码创建了一个名为`timer`的ROS计时器,其周期为0秒,也就是说它立即超时,然后指定当计时器超时时调用名为`creat_callback`的回调函数。具体来说,这行代码首先使用ROS节点句柄`nh`的`createTimer`函数创建了一个计时器对象,并将其赋值给变量`timer`。该函数接受两个参数:第一个参数是一个`ros::Duration`对象,用于指定计时器的周期,这里是0秒,也就是立即超时;第二个参数是一个回调函数指针,用于指定计时器超时时所执行的回调函数,这里是名为`creat_callback`的回调函数。当计时器超时时,ROS将调用`creat_callback`函数来执行回调操作。因为周期为0秒,所以该计时器只会超时一次,然后执行回调函数。

ros::Timer timer = nh.createTimer(ros::Duration(0), creat_callback); ros::spin()

这段代码创建了一个周期为0秒的ROS计时器,并指定当计时器超时时调用名为`creat_callback`的回调函数。接着,通过调用`ros::spin()`函数来使ROS节点进入自循环状态,等待来自ROS系统的事件(例如计时器超时事件、消息到达事件等)。在自循环状态下,ROS会不断地检查是否有事件发生,如果有则会调用相应的回调函数来处理事件。因为计时器的周期为0秒,所以它会立即超时并执行回调函数。而通过调用`ros::spin()`函数,ROS节点会一直等待事件的发生,直到节点被关闭。所以这段代码会在计时器超时后执行回调函数,并一直等待事件的发生,直到节点被关闭。

相关推荐

#include <ros/ros.h> #include <turtlesim/Pose.h> #include <geometry_msgs/Twist.h> #include <std_srvs/Empty.h> #include <cmath> ros::Publisher twist_pub; void poseCallback(const turtlesim::Pose& pose) { static bool is_forward = true; static int count = 0; static float x_start = pose.x; static float y_start = pose.y; static float theta_start = pose.theta; // Calculate distance from starting points float dist = std::sqrt(std::pow(pose.x - x_start, 2) + std::pow(pose.y - y_start, 2)); geometry_msgs::Twist twist_msg; twist_msg.linear.x = 1.0; twist_msg.linear.y = 0.0; twist_msg.linear.z = 0.0; twist_msg.angular.x = 0.0; twist_msg.angular.y = 0.0; twist_msg.angular.z = 0.0; // Check if turtle has reached distance of 2. If so, stop and shutdown the node. if (pose.x - x_start1) { twist_msg.linear.x = 0.0; twist_msg.linear.y = 1.0; twist_pub.publish(twist_msg); // Publish command if(pose.y - y_start>=2.0){ twist_msg.linear.x = -1.0; twist_msg.linear.y = 0.0; twist_pub.publish(twist_msg); // Publish command if(dist<=2.0){ twist_msg.linear.x = 0.0; twist_msg.linear.y = -1.0; twist_pub.publish(twist_msg); // Publish command ROS_INFO("Stop and Completed!"); twist_pub.publish(twist_msg); // Publish command ros::shutdown(); } } } twist_pub.publish(twist_msg); // Publish command } int main(int argc, char** argv) { ros::init(argc, argv, "lab1_node"); ros::NodeHandle nh; twist_pub = nh.advertise<geometry_msgs::Twist>("turtle1/cmd_vel", 1); ros::Subscriber pose_sub = nh.subscribe("turtle1/pose", 1, poseCallback); // reset the turtlesim when this node starts ros::ServiceClient reset = nh.serviceClient<std_srvs::Empty>("reset"); std_srvs::Empty empty; reset.call(empty); ros::spin(); // Keep node running until ros::shutdown() return 0; } 这段代码为什么不能实现乌龟沿完整矩形轨迹运动?并给出修改后的代码

给下列程序添加注释:void DWAPlannerROS::initialize( std::string name, tf2_ros::Buffer* tf, costmap_2d::Costmap2DROS* costmap_ros) { if (! isInitialized()) { ros::NodeHandle private_nh("~/" + name); g_plan_pub_ = private_nh.advertise("global_plan", 1); l_plan_pub_ = private_nh.advertise("local_plan", 1); tf_ = tf; costmap_ros_ = costmap_ros; costmap_ros_->getRobotPose(current_pose_); // make sure to update the costmap we'll use for this cycle costmap_2d::Costmap2D* costmap = costmap_ros_->getCostmap(); planner_util_.initialize(tf, costmap, costmap_ros_->getGlobalFrameID()); //create the actual planner that we'll use.. it'll configure itself from the parameter server dp_ = boost::shared_ptr<DWAPlanner>(new DWAPlanner(name, &planner_util_)); if( private_nh.getParam( "odom_topic", odom_topic_ )) { odom_helper_.setOdomTopic( odom_topic_ ); } initialized_ = true; // Warn about deprecated parameters -- remove this block in N-turtle nav_core::warnRenamedParameter(private_nh, "max_vel_trans", "max_trans_vel"); nav_core::warnRenamedParameter(private_nh, "min_vel_trans", "min_trans_vel"); nav_core::warnRenamedParameter(private_nh, "max_vel_theta", "max_rot_vel"); nav_core::warnRenamedParameter(private_nh, "min_vel_theta", "min_rot_vel"); nav_core::warnRenamedParameter(private_nh, "acc_lim_trans", "acc_limit_trans"); nav_core::warnRenamedParameter(private_nh, "theta_stopped_vel", "rot_stopped_vel"); dsrv_ = new dynamic_reconfigure::Server<DWAPlannerConfig>(private_nh); dynamic_reconfigure::Server<DWAPlannerConfig>::CallbackType cb = boost::bind(&DWAPlannerROS::reconfigureCB, this, _1, 2); dsrv->setCallback(cb); } else{ ROS_WARN("This planner has already been initialized, doing nothing."); } }

最新推荐

recommend-type

druid-1.0.11.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

xmpcore-5.1.2.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平
recommend-type

linux下RS485怎么实现

在Linux下实现RS485通信,需要做以下几个步骤: 1. 确认硬件支持:首先需要确认通信设备硬件是否支持RS485通信,如果不支持需要更换支持RS485通信的硬件设备。 2. 配置串口参数:在Linux下使用RS485通信,需要对串口进行一些特殊的配置。例如,需要将串口设置为半双工模式、开启硬件流控等。可以使用Linux提供的stty命令或者相关API接口进行配置。 3. 编写应用程序:通过Linux提供的串口API接口,编写应用程序实现RS485通信。在应用程序中需要设置对应的串口参数,以及发送和接收数据的逻辑。 4. 配置硬件电平转换器:在使用RS485通信时,需要将串口的逻辑