plot(t,X,‘.-‘,’LineWidth’,1);
时间: 2023-10-04 22:13:54 浏览: 141
这是一个 MATLAB 的 plot 函数的示例,用于在当前图形窗口中绘制一个曲线。其中 't' 和 'X' 分别表示 x 轴和 y 轴的数据,'.-' 表示绘制带有点和线的曲线,'LineWidth' 表示设置线宽为 1。这个命令可以在当前图形窗口中绘制一个以 't' 为横坐标,'X' 为纵坐标的曲线,使用点和线进行绘制,线宽为 1。
在 MATLAB 中,plot 函数是用于绘制曲线、散点图等的基本函数之一。使用 plot 函数时,可以指定 x 轴和 y 轴的数据、曲线的样式、颜色等属性,以及添加标题、标签等元素,从而生成符合需求的图像。在该命令中,'.' 表示使用点进行绘制,'-' 表示使用直线进行连接,'.-' 表示点和线混合的方式进行绘制,从而展现出数据的变化趋势。
相关问题
%% % ----------------------- 卡尔曼滤波 ----------------------------- % -------说明 %X(k^l)=Ak*X(k)+W(k); %Y(k)=Ck*X(k)+V(k) %% clear;clc; %基本参数值 Ak=exp(-0.02); Ck=1; Qk=1-exp(-0.04); Rk=1; %初始时刻的卡尔曼最优值设置 X0=0; P0=1; %观测值y(k) Y=[-3.2 -0.8 -14 -16 -17 -18 -3.3 -2.4 -18 -0.3 -0.4 -0.8 -19 -2.0 -1.2 ... -11 -14 -0.9 0.8 10 0.2 0.5 2.4 -0.5 0.5 -13 0.5 10 -12 0.5 -0.6 -15 -0.7 15 ... 0.5 -0.7 -2.0 -19 -17 -11 -14]; %数据长度 N=length(Y); for k=1:N if k==1 %k=l时由初值开始计算 %预测 X_pre(k)= P_pre(k)= K(k)= %卡尔曼增益 X_kalman(k)= I=eye(size(K(k)));%生成单位矩阵 P_kalman(k)=; else %k>l时开始递推 %预测 X_pre(k)= X_pre(k)= %更新 K(k)= X_kalman(k)= I=eye(size(K(k))); %卡尔曼增益 P_kalman(k) = end end M=1:N; T=0.02*M %作图,画出x(t)的波形 figure () plot(T,Y,'r','LineWidth',1); hold on; plot(T,X,'b','LineWidth',1); legend('测量信号y(t)','Kalman估计信号x(t)') 请补全上述代码
补全代码如下:
```
clear;clc;
%基本参数值
Ak=exp(-0.02);
Ck=1;
Qk=1-exp(-0.04);
Rk=1;
%初始时刻的卡尔曼最优值设置
X0=0;
P0=1;
%观测值y(k)
Y=[-3.2 -0.8 -14 -16 -17 -18 -3.3 -2.4 -18 -0.3 -0.4 -0.8 -19 -2.0 -1.2 ...
-11 -14 -0.9 0.8 10 0.2 0.5 2.4 -0.5 0.5 -13 0.5 10 -12 0.5 -0.6 -15 -0.7 15 ...
0.5 -0.7 -2.0 -19 -17 -11 -14];
%数据长度
N=length(Y);
for k=1:N
if k==1 %k=l时由初值开始计算
%预测
X_pre(k)=Ak*X0;
P_pre(k)=Ak*P0*Ak'+Qk;
K(k)=P_pre(k)*Ck'/(Ck*P_pre(k)*Ck'+Rk); %卡尔曼增益
X_kalman(k)=X_pre(k)+K(k)*(Y(k)-Ck*X_pre(k)); %更新
I=eye(size(K(k)));%生成单位矩阵
P_kalman(k)=(I-K(k)*Ck)*P_pre(k);
else %k>l时开始递推
%预测
X_pre(k)=Ak*X_kalman(k-1);
P_pre(k)=Ak*P_kalman(k-1)*Ak'+Qk;
K(k)=P_pre(k)*Ck'/(Ck*P_pre(k)*Ck'+Rk); %卡尔曼增益
X_kalman(k)=X_pre(k)+K(k)*(Y(k)-Ck*X_pre(k)); %更新
I=eye(size(K(k))); %卡尔曼增益
P_kalman(k)=(I-K(k)*Ck)*P_pre(k);
end
end
M=1:N;
T=0.02*M;
%作图,画出x(t)的波形
figure()
plot(T,Y,'r','LineWidth',1);
hold on;
plot(T,X_kalman,'b','LineWidth',1);
legend('测量信号y(t)','Kalman估计信号x(t)')
```
if iter < 2000 path.pos(1).x = x_G; path.pos(1).y = y_G; path.pos(2).x = T.v(end).x; path.pos(2).y = T.v(end).y; pathIndex = T.v(end).indPrev; % 终点加入路径 j=0; while 1 path.pos(j+3).x = T.v(pathIndex).x; path.pos(j+3).y = T.v(pathIndex).y; pathIndex = T.v(pathIndex).indPrev; if pathIndex == 1 break end j=j+1; end % 沿终点回溯到起点 path.pos(end+1).x = x_I; path.pos(end).y = y_I; % 起点加入路径 for j = 2:length(path.pos) plot([path.pos(j).x; path.pos(j-1).x;], [path.pos(j).y; path.pos(j-1).y], 'g', 'Linewidth', 4); end else disp('Error, no path found!'); end
这段代码是用于在RRT路径规划中绘制路径的。如果迭代次数iter小于2000,则路径被找到,可以将其绘制出来。path.pos是一个结构体数组,存储了路径上的所有点的x和y坐标。在这段代码中,起点和终点分别被添加到路径的第一个和最后一个元素。然后,通过while循环,从终点开始向回遍历树结构,将路径上所有的点添加到path.pos中。最后,使用for循环将路径上相邻的点连接起来,并用绿色线条绘制出来。如果迭代次数iter超过2000,则认为路径未找到,输出错误信息。
阅读全文