模拟退火算法代码实现
时间: 2024-09-25 10:00:21 浏览: 33
模拟退火算法和代码实现
模拟退火算法是一种全局优化搜索技术,常用于解决复杂函数的最小化问题。其基本思想是从初始解开始,通过一定的概率接受当前状态的“坏”解,以增加算法跳出局部最优的可能性。以下是模拟退火算法的一个简单Python代码实现:
```python
import random
def acceptance_probability(current_state, new_state, temperature):
delta_energy = energy(new_state) - energy(current_state)
return min(1, np.exp(-delta_energy / temperature))
def simulate_annealing(starting_state, target_function, initial_temperature, cooling_rate, num_iterations):
current_state = starting_state
best_state = starting_state
best_energy = target_function(starting_state)
for _ in range(num_iterations):
new_state = perturb(current_state)
probability = acceptance_probability(current_state, new_state, temperature)
if probability > random.random() or target_function(new_state) < best_energy:
current_state = new_state
if target_function(new_state) < best_energy:
best_state = new_state
best_energy = target_function(new_state)
temperature *= cooling_rate
return best_state
# 假设energy是一个计算目标函数值的函数,perturb生成一个新的状态
starting_state = ... # 初始化状态
target_function = ...
initial_temperature = ...
cooling_rate = ...
num_iterations = ...
best_solution = simulate_annealing(starting_state, target_function, initial_temperature, cooling_rate, num_iterations)
```
在这个代码里,`energy`函数是用来计算状态能量的,`perturb`函数则是对当前状态做微小随机扰动生成新状态。在每一步迭代中,都会根据接受概率决定是否接受新状态。
阅读全文