function [eigvals, eigvecs] = symqr(A) % A: 输入的实对称矩阵 % eigvals: 输出的特征值向量 % eigvecs: 输出的特征向量矩阵 n = size(A, 1); eigvecs = eye(n); while(true) for i = 1:n-1 if abs(A(i+1, i)) < eps*norm(A, 'fro') continue; end [Q, R] = qr(A(i:i+1, i:n)); G = [eye(i-1), zeros(i-1, 2); zeros(2, i-1), Q'*eigvecs(i:i+1, :)*Q;]; eigvecs = eigvecs*G; A = G'*A*G; end if max(max(abs(tril(A, -1)))) < eps*norm(A, 'fro') break; end end eigvals = diag(A); end出差无法运行,修改它

时间: 2023-12-11 08:05:19 浏览: 82
DOC

输入一个矩阵,输出一个结果

这段代码缺少输入参数 A,建议在调用函数时传入实对称矩阵 A。 此外,如果没有定义变量 eps,程序也无法正常运行。建议在程序开头使用 eps = 1e-12; 定义这个变量。 下面是修改后的代码: ```matlab function [eigvals, eigvecs] = symqr(A) % A: 输入的实对称矩阵 % eigvals: 输出的特征值向量 % eigvecs: 输出的特征向量矩阵 n = size(A, 1); eigvecs = eye(n); eps = 1e-12; while(true) for i = 1:n-1 if abs(A(i+1, i)) < eps*norm(A, 'fro') continue; end [Q, R] = qr(A(i:i+1, i:n)); G = [eye(i-1), zeros(i-1, 2); zeros(2, i-1), Q'*eigvecs(i:i+1, :)*Q;]; eigvecs = eigvecs*G; A = G'*A*G; end if max(max(abs(tril(A, -1)))) < eps*norm(A, 'fro') break; end end eigvals = diag(A); end ``` 请注意,在使用 QR 分解时,需要保证计算出的 Q 矩阵是旋转矩阵,即满足 Q*Q' = I。这里的 QR 分解使用 Matlab 内置的 qr 函数,可以保证计算出的 Q 矩阵是旋转矩阵。如果使用其他 QR 分解算法,需要额外处理 Q 矩阵以满足旋转矩阵的要求。
阅读全文

相关推荐

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),存在这个错误是由于数据中存在复数,而该算法不支持处理复数数据造成的,如何解决

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from colorcet.plotting import arr from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) # 将复数类型的数据转换为实数类型 X = np.absolute(X) # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),反复会出现numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception,这个问题

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from colorcet.plotting import arr from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) X = np.real(X) arr_real = arr.astype('float') # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),这行代码出现了这个numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception问题

class svd_recommender_py(): #svd矩阵推荐 def svds(A, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. #获得隐式定义的格拉米矩阵的低秩近似。 #这不是解决问题的稳定方法。 solver == 'arpack' eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) #格拉米矩阵具有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复杂检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #得到一个指示哪些本征对不是退化微小的掩码, #并创建阈值奇异值的重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh这段代码主要是为了将scipy包中的SVD计算方法封装成一个自定义类,是否封装合适?如果不合适,给出修改后的完整代码

class SVDRecommender: def __init__(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if self.which == 'LM': largest = True elif self.which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) #获得隐式定义的格拉米矩阵的低秩近似。 eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) #格拉米矩阵有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复数检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #获得一个指示哪些本征对不是简并微小的掩码, #并为阈值奇异值创建一个重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T) 将上述代码修改为使用LM,迭代器使用arpack

class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) # Gramian matrix has real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use complex detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerate tiny, # and create a reordering array for thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh将这段代码放入一个.py文件中,用Spyder查看,有报错,可能是缩进有问题,无法被调用,根据这个问题,给出解决办法,给出改正后的完整代码

from scipy.sparse.linalg import eigsh, LinearOperator from scipy.sparse import isspmatrix, is_pydata_spmatrix class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): largest = self.which == 'LM' if not largest and self.which != 'SM': raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) eigvals = np.maximum(eigvals.real, 0) t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T)这段代码中使用的scipy包太旧了,导致会出现报错信息为:cannot import name 'is_pydata_spmatrix' from 'scipy.sparse' (D:\Anaconda\lib\site-packages\scipy\sparse_init.py),将这段代码修改为使用最新版的scipy包