解释代码def cvshow(name, img): cv.imshow(name, img) cv.waitKey(0) cv.destroyAllWindows()
时间: 2024-04-03 13:30:58 浏览: 48
这段代码是定义了一个函数,函数名为cvshow,有两个参数:name和img。它的作用是将一个名为name,内容为img的图像显示出来,等待用户任意按键后关闭所有窗口。其中cv.imshow()函数用于显示图像,cv.waitKey()函数用于等待用户按键,cv.destroyAllWindows()函数用于关闭所有窗口。
相关问题
def CaptureImages(window_name,student_id): capture_pic_num = 100 folder_path = f"C:/Users/DELL/PycharmProjects/pythonProject/{student_id}" os.makedirs(folder_path, exist_ok=True) cv2.namedWindow(window_name) cap = cv2.VideoCapture(0) classifier = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml") color = (0, 255, 0) num = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = classifier.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) if len(faces) > 0: for (x, y, w, h) in faces: img_path = f"{folder_path}/{num}.jpg" image = frame[y - 10:y + h + 10, x - 10:x + w + 10] cv2.imwrite(img_path, image) num += 1 cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame, f'num:{num}', (x + 30, y + 30), font, 1, (255, 0, 255), 4) if num >= capture_pic_num: break cv2.imshow(window_name, frame) if cv2.waitKey(30) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()怎么将这个功能与一个qt界面的按钮相连接
要将这个功能与一个Qt界面的按钮相连接,你需要按照以下步骤进行操作:
1. 导入必要的模块和库:
```python
import cv2
import os
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget
from PyQt5.QtCore import Qt, QThread
from PyQt5.QtGui import QImage, QPixmap
```
2. 创建一个 Qt 主窗口类(例如 `MainWindow`):
```python
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Capture Images")
self.setFixedSize(300, 200)
# 创建按钮并连接到槽函数
self.capture_btn = QPushButton("Capture", self)
self.capture_btn.clicked.connect(self.start_capture)
# 创建布局,将按钮放入布局中,并设置布局为窗口的中心布局
layout = QVBoxLayout()
layout.addWidget(self.capture_btn)
central_widget = QWidget()
central_widget.setLayout(layout)
self.setCentralWidget(central_widget)
# 按钮点击事件的槽函数
def start_capture(self):
# 在这里调用 CaptureImages 函数进行图像捕获
CaptureImages("Capture Images", "student_id")
```
3. 创建一个线程类(例如 `CaptureThread`),用于在后台执行图像捕获操作:
```python
class CaptureThread(QThread):
def run(self):
CaptureImages("Capture Images", "student_id")
```
4. 在主程序中创建 Qt 应用程序并启动主窗口:
```python
if __name__ == "__main__":
app = QApplication([])
main_window = MainWindow()
main_window.show()
app.exec_()
```
这样,当你点击按钮时,它将调用 `start_capture` 槽函数,然后在后台启动一个线程来执行 `CaptureImages` 函数进行图像捕获操作。请注意,你需要将 `student_id` 更改为实际的学生ID。
希望这可以帮助到你!如果你有任何其他问题,请随时问我。
import numpy as np import cv2 class ColorMeter(object): color_hsv = { # HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255) # "orange": [np.array([11, 115, 70]), np.array([25, 255, 245])], "yellow": [np.array([11, 115, 70]), np.array([34, 255, 245])], "green": [np.array([35, 115, 70]), np.array([77, 255, 245])], "lightblue": [np.array([78, 115, 70]), np.array([99, 255, 245])], "blue": [np.array([100, 115, 70]), np.array([124, 255, 245])], "purple": [np.array([125, 115, 70]), np.array([155, 255, 245])], "red": [np.array([156, 115, 70]), np.array([179, 255, 245])], } def __init__(self, is_show=False): self.is_show = is_show self.img_shape = None def detect_color(self, frame): self.img_shape = frame.shape res = {} # 将图像转化为HSV格式 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) for text, range_ in self.color_hsv.items(): # 去除颜色范围外的其余颜色 mask = cv2.inRange(hsv, range_[0], range_[1]) erosion = cv2.erode(mask, np.ones((1, 1), np.uint8), iterations=2) dilation = cv2.dilate(erosion, np.ones((1, 1), np.uint8), iterations=2) target = cv2.bitwise_and(frame, frame, mask=dilation) # 将滤波后的图像变成二值图像放在binary中 ret, binary = cv2.threshold(dilation, 127, 255, cv2.THRESH_BINARY) # 在binary中发现轮廓,轮廓按照面积从小到大排列 contours, hierarchy = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) if len(contours) > 0: # cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高 boxes = [ box for box in [cv2.boundingRect(c) for c in contours] if min(frame.shape[0], frame.shape[1]) / 10 < min(box[2], box[3]) < min(frame.shape[0], frame.shape[1]) / 1 ] if boxes: res[text] = boxes if self.is_show: for box in boxes: x, y, w, h = box # 绘制矩形框对轮廓进行定位 cv2.rectangle( frame, (x, y), (x + w, y + h), (153, 153, 0), 2 ) # 将绘制的图像保存并展示 # cv2.imwrite(save_image, img) cv2.putText( frame, # image text, # text (x, y), # literal direction cv2.FONT_HERSHEY_SIMPLEX, # dot font 0.9, # scale (255, 255, 0), # color 2, # border ) if self.is_show: cv2.imshow("image", frame) cv2.waitKey(1) # cv2.destroyAllWindows() return res if __name__ == "__main__": cap = cv2.VideoCapture(0) m = ColorMeter(is_show=True) while True: success, frame = cap.read() res = m.detect_color(frame) print(res) if cv2.waitKey(1) & 0xFF == ord('q'): break
"red": (0, 255, 255),
"green": (85, 255, 128),
"blue": (170, 255, 128) } 你好!我能够理解你正在询问的是如何使用HSV色彩空间来表示不同的颜色。例如,红色的HSV值为(0,255,255),绿色的HSV值为(85,255,128),蓝色的HSV值为(170,255,128)。
阅读全文