clc;clear all; F=100:3:585;%0.3 150 外扰力没隔3画一个点,画到200 options=odeset('reltol',1e-7); t0=2*pi/1; hold on for j=1:length(F) [t,y]=ode45('mode',[0:t0/50:200*t0],[0,0],options,[],F(j)); ii=0:5:100; end plot(F(j),y(ii,1),'k.','markersize',5) xlabel('外扰力F(N)') ylabel('振动速度x') step=j

时间: 2024-04-20 13:22:17 浏览: 12
您的代码是在MATLAB中进行的,它包括使用ode45函数求解常微分方程。在这段代码中,您首先清除了MATLAB的工作空间并定义了变量F作为100到585的范围,步长为3。然后,您设置了一些ode45函数的选项,包括相对误差容限。接下来,您使用for循环遍历F的每个值,并使用ode45函数解决名为'mode'的ODE问题。您还定义了一个变量ii来存储0到100的范围,步长为5。最后,您绘制了F和y(ii,1)之间的关系,其中y是ode45函数的解,并设置了x轴和y轴的标签。最后,step的值被设置为j的值。
相关问题

clc;clear;close all; f=0.3:5000; % 定义频率范围 omg=2*pi*f; % 计算角频率 lu=0.175; % 波长 c=350; % 声速 v=1./cos(omg*lu/c); % 计算声波的速度 plot(f,abs(v)); % 绘制频率与速度之间的关系图像 load mtlb; % 载入数据 F=50; % 每个数据块的长度 M=0; K=5; % 聚类数 Y=buffer(mtlb,F,M)'; % 按照每个数据块的长度将数据分块 [idx,C]=kmeans(Y,K,'Replicates',5,'Distance','cosine'); % 对数据进行聚类 Temp=; rY=Temp'; rmtlb=rY(:); soundsc(mtlb,Fs);pause; soundsc(rmtlb,Fs);解释代码并补全

这段代码包含了声学信号处理和聚类分析两部分: 1. 声学信号处理和聚类分析 ```matlab clc;clear;close all; f = 0.3 : 5000; % 定义频率范围 omg = 2 * pi * f; % 计算角频率 lu = 0.175; % 波长 c = 350; % 声速 v = 1 ./ cos(omg * lu / c); % 计算声波的速度 plot(f, abs(v)); % 绘制频率与速度之间的关系图像 load mtlb; % 载入数据 F = 50; % 每个数据块的长度 M = 0; K = 5; % 聚类数 Y = buffer(mtlb, F, M)'; % 按照每个数据块的长度将数据分块 [idx, C] = kmeans(Y, K, 'Replicates', 5, 'Distance', 'cosine'); % 对数据进行聚类 ``` 这段代码首先进行声学信号处理,包括频率和角频率的计算、声波速度的计算和绘图,以及载入声音数据 `mtlb`。然后通过 `buffer` 函数将数据按照每个数据块的长度分块,并将其转置后存储在 `Y` 中。最后调用 `kmeans` 函数对数据进行聚类,并将聚类结果存储在 `idx` 和 `C` 中。 2. 补全代码 ```matlab Temp = zeros(size(Y)); % 初始化临时数组 for i = 1 : K % 遍历每个聚类 Temp(idx == i, i) = 1; % 将属于第 i 个聚类的数据标记为 1 end rY = Y * C'; % 计算重构后的数据 rY = rY .* Temp; % 只保留属于聚类中心的数据 rmtlb = rY(:); % 将数据转为一维数组 soundsc(mtlb, Fs); % 播放原始数据 pause; % 等待播放完成 soundsc(rmtlb, Fs); % 播放重构后的数据 ``` 这段代码的功能是对聚类结果进行重构,并播放原始数据和重构后的数据。具体实现过程如下: 首先,定义一个大小与 `Y` 相同的临时数组 `Temp`,并将其中属于第 i 个聚类的数据标记为 1。然后,通过矩阵乘法计算重构后的数据 `rY`,并只保留属于聚类中心的数据。最后,将重构后的数据转为一维数组,并通过 `soundsc` 函数分别播放原始数据和重构后的数据。

clear all; clc; mx=5; my=4;%x轴和y轴阵元个数; sn=2;%信号个数 dw=0.2;%半径波长比 snr1=100; %[50,50,50,50]; N=4096;%采样点数; fangwei=[10 25 ];%信号方位角 yangjiao=[60 80 ]; for i=1:sn for m=1:mx daoxiang1(m,i)=exp(-j*2*pi*dw*(m-1)*cos(fangwei(i)*pi/180)*cos(yangjiao(i)*pi/180)); end for mm=1:my daoxiang2(mm,i)=exp(-j*2*pi*dw*mm*sin(fangwei(i)*pi/180)*cos(yangjiao(i)*pi/180)); end ss=randn(sn,N); %ss(i,:)=snr(i)*(1+0.3*sin(2*pi*f(i)*n/fs)).*exp(j*2*pi*n*If(i)/fs);%AM调制信号(S(t)) end daoxiang=[daoxiang1;daoxiang2]; Signal=daoxiang*ss; x = awgn(Signal,snr1,'measured'); %加入高斯白噪声 %noise=randn(mx+my,N); %noise_h=(hilbert(noise.')).'/sqrt(2);%对噪声进行希尔伯特变化映射到复数空间 %x=Signal+noise_h;%接收信号(y(t)) R=x*x'/N; [tzxiangliang,tzzhi]=eig(R); Nspace=tzxiangliang(:,1:mx+my-sn);%噪声子空间对应小的特征值(从小到大排列) for azi=1:1:180 for ele=1:1:90 for m=1:mx daoxiang3(m,1)=exp(-j*2*pi*dw*(m-1)*cos(azi*pi/180)*cos(ele*pi/180)); end for mm=1:my daoxiang4(mm,1)=exp(-j*2*pi*dw*mm*sin(azi*pi/180)*cos(ele*pi/180)); end AQ1=[daoxiang3;daoxiang4]; Power=AQ1'*Nspace*Nspace'*AQ1; %在1-180度范围内进行计算 a=abs(Power); Pmusic(ele,azi)=-10*log10(abs(Power)); end end figure mesh(Pmusic) 怎么把生成的谱峰图显示峰值点的数值

可以使用MATLAB中的findpeaks函数来找到谱峰图中的峰值点及其数值。具体实现方法如下: 1. 将Pmusic矩阵转换为向量形式。 2. 使用findpeaks函数查找向量中的峰值点及其数值。 3. 使用scatter函数将峰值点的数值在谱峰图上标出。 修改后的代码如下: ```matlab clear all; clc; mx=5; my=4;%x轴和y轴阵元个数; sn=2;%信号个数 dw=0.2;%半径波长比 snr1=100; %[50,50,50,50]; N=4096;%采样点数; fangwei=[10 25 ];%信号方位角 yangjiao=[60 80 ]; for i=1:sn for m=1:mx daoxiang1(m,i)=exp(-j*2*pi*dw*(m-1)*cos(fangwei(i)*pi/180)*cos(yangjiao(i)*pi/180)); end for mm=1:my daoxiang2(mm,i)=exp(-j*2*pi*dw*mm*sin(fangwei(i)*pi/180)*cos(yangjiao(i)*pi/180)); end ss=randn(sn,N); %ss(i,:)=snr(i)*(1+0.3*sin(2*pi*f(i)*n/fs)).*exp(j*2*pi*n*If(i)/fs);%AM调制信号(S(t)) end daoxiang=[daoxiang1;daoxiang2]; Signal=daoxiang*ss; x = awgn(Signal,snr1,'measured'); %加入高斯白噪声 %noise=randn(mx+my,N); %noise_h=(hilbert(noise.')).'/sqrt(2);%对噪声进行希尔伯特变化映射到复数空间 %x=Signal+noise_h;%接收信号(y(t)) R=x*x'/N; [tzxiangliang,tzzhi]=eig(R); Nspace=tzxiangliang(:,1:mx+my-sn);%噪声子空间对应小的特征值(从小到大排列) for azi=1:1:180 for ele=1:1:90 for m=1:mx daoxiang3(m,1)=exp(-j*2*pi*dw*(m-1)*cos(azi*pi/180)*cos(ele*pi/180)); end for mm=1:my daoxiang4(mm,1)=exp(-j*2*pi*dw*mm*sin(azi*pi/180)*cos(ele*pi/180)); end AQ1=[daoxiang3;daoxiang4]; Power=AQ1'*Nspace*Nspace'*AQ1; %在1-180度范围内进行计算 a=abs(Power); Pmusic(ele,azi)=-10*log10(abs(Power)); end end % 找到谱峰图中的峰值点及其数值 Pmusic_vec = reshape(Pmusic, 1, []); [pks, locs] = findpeaks(Pmusic_vec); % 将峰值点的数值在谱峰图上标出 figure mesh(Pmusic) hold on scatter3(locs, mod(locs-1, 90)+1, pks, 'r', 'filled') ``` 运行后会得到一个带有标出峰值点的谱峰图。

相关推荐

%%%%%%%%%%%%%%%%%%%%%% 本程序的目的是设计控制器u,确保变量x能够很好地跟踪期望位移xr和期望速度dxr clc; clear all; k2=2; %%%%%%%%%%%%%% 经验值,个人根据经验值自己设定 %%%%%%%%%%%%%%%%%% 仿真步长、采样间隔 ts=0.1; TT=40; iter=TT/ts; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 参考位移、速度、加速度 % xr=zeros(1,iter); % dxr=zeros(1,iter); % ddxr=zeros(1,iter); % x=zeros(2,iter); %%%%%%%%%%%%%%%% 定义变量x为3维 x_0=[0;0;0]; x_1=[-1000;0;0]; x_2=[-2000;0;0]; %%%%%%%%%%%%%%%% 变量x的初值 % % % u=zeros(1,iter); %%%%%%%%%%%%%%%% 控制器 % %% 参数 L=1000; %%%%安全距离 g=9.8; h_0=200; j_0=80; m0=500000; a0=1; b0=0.3; c0=0.05; l0 = randi([0, 2000],1); R= randi([300,1000]); lambda = 0.01; % 指数分布的参数,可以根据需要调整 R = round(max(300, exprnd(1/lambda))); % 生成符合指数分布的随机数,并将其四舍五入为整数,同时限制其最小值为300 p = 0.8; % 0出现的概率为0.5,可以根据需要调整 l0 = binornd(1, p)*(randi([0, 200]) + 1); % 生成符合二项分布的随机数,如果随机数为0,则将其设置为1,然后再乘以一个随机数,在0到200之间变化 aerfa0=0.000001; w0_max=2500000; w0_min=-2500000; angle0=rand*pi/180; U0=10^7; E0=10^5; beta0=6; q0=77; p0=79; time=zeros(1,iter); for k=1:iter time(k)=k*ts; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 参考位移、速度、加速度 time_points=0:TT/40:TT; velocity_points=[0, 6, 12, 17, 22, 27, 32, 37, 41, 45,... 48, 51, 54, 57, 60, 62.5, 62.5, 62.5, 62.5, 61.5,... 62.2, 62.4, 62.4, 62.5, 60, 57, 54, 51, 48, 47,... 45, 40, 35, 30, 28, 26, 24, 22, 19, 10, 0]; dxr(k)=interp1(time_points,velocity_points,time(k),'spline'); if k<2 xr(k)=0; ddxr(k)=0; else xr(k)=xr(k-1)+ts*dxr(k); ddxr(k)=(dxr(k)-dxr(k-1))/ts; end

clc; clear all; [filename,pathname]=uigetfile({'*.jpg;*.tif;*.png;*gif','all imagine files';'*.*','all files'},'select your photo'); path=[pathname,filename]; image=imread(path); % axes(handles.photo); imshow(image);%显示图片 %image processing I=rgb2gray(image); I=rangefilt(I);%滤波 background = imopen(I,strel('disk',11));%使用形态学开来估计背景 I2 = I-background;%从原始图像中减去背景图像 I3 = imadjust(I2);%增强对比度 bw = imbinarize(I3);%阈 值图像 bw = bwareaopen(bw,160);%降噪150,160 bw=edge(bw,'canny'); %边缘检测 %bw=1-bw; % axes(handles.a1); imshow(bw); %se=strel('disk',13);%15 se=strel('square',15);%15 bw1=imclose(bw,se);%闭 bw2=imdilate(bw1,se);%膨胀 bw2=imerode(bw2,se);%腐蚀 bw3=imfill(bw2,'holes'); % axes(handles.a2); imshow(bw3); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %circle detection rmin = 20; rmax = 2500; radiusRange=[rmin rmax]; [center, rad] = imfindcircles(bw3,radiusRange,'EdgeThreshold',0.13);%检测灵敏度(边缘渐变阈值)0.3 display(center); display(rad); % axes(handles.a3); imshow(bw3); viscircles(center, rad,'Color','b'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %initialize the number of coins one=0; half=0; little=0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %coin recognition [m,n]=size(rad); num=m; i=1; j=num; min=rad(i); max=rad(j); while i<=j if rad(i)<rad(j) if rad(i)<min min=rad(i); else if rad(j)<max max=rad(j); end end else if rad(j)<min min=rad(j); else if rad(i)<max max=rad(i); end end end i=i+1; j=j-1; end sum=0; for i=1:num sum=rad(i)+sum; end % ave=(sum-(min+max))/(num-2); ave = sum/num; for i=1:num if 0.6<(rad(i)/ave)&&(rad(i)/ave)<1.5 if rad(i)>ave one=one+1; else if 0.93<(rad(i)/ave) && rad(i)<=ave half=half+1; else little = little+1; end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %display results sum=half*0.5+one+little*0.1; one half little sum这段代码什么意思

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

机器学习怎么将excel转为csv文件

机器学习是一种利用计算机算法和统计数据的方法来训练计算机来进行自动学习的科学,无法直接将excel文件转为csv文件。但是可以使用Python编程语言来读取Excel文件内容并将其保存为CSV文件。您可以使用Pandas库来读取Excel文件,并使用to_csv()函数将其保存为CSV格式。以下是代码示例: ```python import pandas as pd # 读取 Excel 文件 excel_data = pd.read_excel('example.xlsx') # 将数据保存为 CSV 文件 excel_data.to_csv('example.csv', index=
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

写出一个拉格朗日多项式插值程序,并调用该函数做图

好的,以下是一个使用拉格朗日多项式进行插值的 Python 代码: ``` import numpy as np import matplotlib.pyplot as plt def lagrangeInterpolation(x, y, x_interp): """ 使用拉格朗日多项式进行插值 x: 已知点的 x 坐标数组 y: 已知点的 y 坐标数组 x_interp: 插值点的 x 坐标数组 """ n = len(x) m = len(x_interp) L = np.zeros([n, m]) fo
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩