设f(x)=arcsinx,x∈[-1,1],在Φ=span{1,x,x²,x³}中求f(x)的最佳平方逼近多项式

时间: 2023-02-05 18:41:51 浏览: 70
如果要在$\Phi$中求出$f(x)$的最佳平方逼近多项式,我们需要求出$f(x)$的最小二乘拟合多项式。这可以通过解决下列线性方程组来实现: $$\begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$$ 其中$x_1, x_2, ..., x_n$是$[-1, 1]$区间内的n个点,$a_0, a_1, a_2, a_3$是未知系数,$f(x_1), f(x_2), ..., f(x_n)$是函数$f(x)$在这些点上的取值。解决这个方程组后,所得到的最小二乘拟合多项式就是$f(x)$在$\Phi$中的最佳平方逼近多项式。
相关问题

利用matlab求以下题目:设f(x)=arcsinx,x∈[-1,1],在Φ=span{1,x,x²,x³}中求f(x)的最佳平方逼近多项式。

### 回答1: 首先,您可以在 [-1,1] 区间内构造一组至少四个点的数据点来表示函数 f(x) = arcsinx。然后,可以使用 Matlab 中的函数 polyfit 来拟合这些数据点。例如,如果您构造了五个数据点,可以使用以下代码来求出最佳平方逼近多项式: x = [-1, -0.5, 0, 0.5, 1]; % 五个数据点的横坐标 y = [arcsin(-1), arcsin(-0.5), arcsin(0), arcsin(0.5), arcsin(1)]; % 五个数据点的纵坐标 p = polyfit(x, y, 3); % 拟合数据点,得到次数为 3 的最佳平方逼近多项式 现在,变量 p 中就保存了求得的最佳平方逼近多项式。您可以使用 polyval 函数来计算多项式的值,例如: x0 = 0.2; % 计算多项式在 x=0.2 处的值 y0 = polyval(p, x0); 希望这些信息能帮到您! ### 回答2: 要求在Φ=span{1,x,x²,x³}中求f(x)的最佳平方逼近多项式,可以利用最小二乘法来解决这个问题。 首先,我们需要求解一个线性方程组来得到逼近多项式的系数。设逼近多项式为p(x)=a₀+a₁x+a₂x²+a₃x³,我们的目标是找到使得f(x)-p(x)的平方和最小的系数a₀、a₁、a₂和a₃。 将f(x)=arcsinx和逼近多项式p(x)代入到最小二乘问题中,得到方程组: ∑[f(x)-p(x)]*xⁱ = 0, i=0,1,2,3 通过计算这个方程组,我们可以得到逼近多项式的系数。在MATLAB中,可以表示为: A = [1, x₁, x₁², x₁³; 1, x₂, x₂², x₂³; ...; 1, xₙ, xₙ², xₙ³] b = [arcsin(x₁); arcsin(x₂); ...; arcsin(xₙ)] 其中,x₁、x₂、...、xₙ为[-1,1]上的一组离散点,n为离散点的个数。 然后,利用最小二乘法求解线性方程组A*a=b,其中a=[a₀, a₁, a₂, a₃]为逼近多项式的系数。 解方程组的MATLAB代码为: a = A\b 最后,通过求得的系数a,我们可以得到逼近多项式p(x),并根据p(x)的平方和来评估逼近的程度。 ### 回答3: 要求找到一个最佳平方逼近多项式,即在Φ=span{1,x,x²,x³}中找到一个多项式g(x),使得f(x)-g(x)的平方在区间[-1,1]上的积分最小。 首先,可以通过变换得到一个新的基。设y=sin(x),则x=arcsin(y),并且满足-1≤y≤1。我们可以使用这个新的基来表示f(x)。 接下来,我们需要构造一个关于y的多项式p(y)来近似函数y。我们可以假设p(y)的形式为p(y)=c₀+c₁y+c₂y²+c₃y³,其中c₀、c₁、c₂、c₃为待定系数。将y=sin(x)代入p(y)得到p(sin(x))=c₀+c₁sin(x)+c₂sin²(x)+c₃sin³(x)。 然后,我们需要将p(sin(x))变换回和f(x)在相同基上进行比较。由于p(sin(x))是y的多项式,而f(x)是x的多项式,我们需要将p(sin(x))进行级数展开,并将sin(x)表示为级数展开的形式,即将这两个多项式进行匹配。在此过程中,我们可以得到新的展开式p(x)=a₀+a₁x+a₂x²+a₃x³。 最后,我们比较f(x)和p(x)的差值,即计算(f(x)-p(x))²在区间[-1,1]上的积分。通过求解最小化这个积分的问题,可以得到最佳平方逼近多项式p(x)。 这个过程可以用MATLAB中的函数进行求解。首先,我们需要将y=sin(x)的多项式p(y)转换为p(x),然后计算(f(x)-p(x))²在区间[-1,1]上的积分,并求解最小化这个积分的问题,得到最佳平方逼近多项式的系数。

设f(x)=arcsinx,x∈[-1,1],在Φ=span{1,x,x²,x³}中求f(x)的最佳平方逼近多项式,能用代码解决一下这个问题吗

好的,我可以尝试用代码来帮助您解决这个问题。 我们首先需要求出 $f(x)$ 的前四项幂级数展开式。由于 $f(x)=\arcsin x$,我们可以使用等价于 $\frac{1}{\sqrt{1-x^2}}$ 的 Taylor 展开式来求得: $$f(x)=x+\frac{x^3}{6}+\frac{3x^5}{40}+\frac{5x^7}{112}+\cdots$$ 接下来,我们可以使用最小二乘法来求得在 $\Phi$ 基底下的最佳平方逼近多项式 $P(x)$。首先,我们需要构建观测矩阵 $\mathbf{A}$ 和观测向量 $\mathbf{b}$,其中 $\mathbf{A}$ 的第 $i$ 行第 $j$ 列元素为 $x_i^j$,$\mathbf{b}$ 的第 $i$ 元素为 $f(x_i)$。我们可以使用下面的 Python 代码来构建这两个矩阵: ```python import numpy as np # 构建观测矩阵 A 和观测向量 b n = 4 # 拟合的多项式的阶次 x = np.linspace(-1, 1, n+1) # 生成 n+1 个均匀分布的点 A = np.vander(x, n+1) # 构建观测矩阵 b = np.array([f(xi) for xi in x]) # 构建观测向量 ``` 然后,我们可以使用最小二乘法求得系数矩阵 $\mathbf{c}$,其中 $P(x)=\sum_{i=0}^n c_i x^i$。我们可以使用下面的 Python 代

相关推荐

最新推荐

recommend-type

基于GEC6818五子棋游戏GEC6818_Gomoku.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

单片机C语言Proteus仿真实例左右来回的流水灯

单片机C语言Proteus仿真实例左右来回的流水灯提取方式是百度网盘分享地址
recommend-type

电能表接线错误分析软件.zip

电能表接线错误分析软件
recommend-type

setuptools-3.8.1.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

铁心电抗器设计软件.zip

铁心电抗器设计软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。