使用pytorch训练一个基于多尺度自编码网络,在网络中encoder、fusion和decoder函数分别表示编码器、融合策略和解码器,给出python代码
时间: 2023-07-15 13:11:43 浏览: 198
下面是使用PyTorch训练一个基于多尺度自编码网络的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import transforms
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1)
self.relu3 = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.relu3(x)
return x
class Fusion(nn.Module):
def __init__(self):
super(Fusion, self).__init__()
self.conv1 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2, padding=1, output_padding=1)
self.relu2 = nn.ReLU()
self.conv3 = nn.ConvTranspose2d(in_channels=32, out_channels=1, kernel_size=3, stride=1, padding=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.sigmoid(x)
return x
class MultiScaleAutoencoder(nn.Module):
def __init__(self):
super(MultiScaleAutoencoder, self).__init__()
self.encoder = Encoder()
self.fusion = Fusion()
def forward(self, x):
x = self.encoder(x)
x = self.fusion(x)
return x
def train(model, dataloader, criterion, optimizer, num_epochs):
for epoch in range(num_epochs):
running_loss = 0.0
for data in dataloader:
inputs, _ = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, running_loss/len(dataloader)))
if __name__ == '__main__':
# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = MNIST(root='./data', train=True, transform=transform, download=True)
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# 创建模型、损失函数和优化器
model = MultiScaleAutoencoder()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
train(model, train_dataloader, criterion, optimizer, num_epochs=10)
```
这个示例代码中,我们使用了`Encoder`和`Fusion`两个模块实现多尺度自编码网络。`Encoder`模块包含了三个卷积层,将输入图像编码成一个尺寸为`(128, 7, 7)`的特征图;`Fusion`模块包含了三个反卷积层,将特征图解码成与输入图像相同尺寸的输出。
在训练循环中,我们使用了均方误差(MSE)作为损失函数,并使用Adam优化器进行优化。
阅读全文