进一步了解下mavros_msg/SetMode

时间: 2023-12-13 20:03:00 浏览: 32
mavros_msgs/SetMode是mavros_msgs消息包中的一条消息,用于设置无人机的模式。该消息包含两个字段,分别是base_mode和custom_mode。其中,base_mode是一个8位二进制掩码,用于设置无人机的基本模式(如手动、自动、GUIDED等),而custom_mode是一个字符串,用于设置无人机的自定义模式。 通过发送SetMode消息,我们可以从远程计算机控制无人机的运行模式,例如手动模式、自动模式、GUIDED模式等。同时,我们也可以通过设置custom_mode字段来实现自定义模式的控制,例如设置无人机的航点或执行特定的任务。在实际应用中,我们可以通过编写ROS节点来发送SetMode消息,实现对无人机的模式控制。
相关问题

这段代码中发布的话题和消息和消息类型分别是什mavros_msgs::State current_state; void state_cb(const mavros_msgs::State::ConstPtr& msg){ current_state = *msg; } int main(int argc, char **argv) { ros::init(argc, argv, "position"); ros::NodeHandle nh; ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State> ("mavros/state", 10, state_cb); ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped> ("mavros/setpoint_position/local", 10); ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool> ("mavros/cmd/arming"); ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode> ("mavros/set_mode"); //ros::Publisher velocity_pub = nh.advertise<geometry_msgs::TwistStamped> // ("mavros/setpoint_velocity/cmd_vel", 10); //the setpoint publishing rate MUST be faster than 2Hz ros::Rate rate(20.0);

这段代码使用 ROS 发布和订阅了一些话题,其中发布的消息类型是 `geometry_msgs::PoseStamped`,订阅的消息类型是 `mavros_msgs::State`,服务类型是 `mavros_msgs::CommandBool` 和 `mavros_msgs::SetMode`。 具体来说: - 发布的话题是 `mavros/setpoint_position/local`,发布的消息类型是 `geometry_msgs::PoseStamped`。这个话题通常用于设置飞机的本地位置,即相对于起点的位置。 - 订阅的话题是 `mavros/state`,订阅的消息类型是 `mavros_msgs::State`。这个话题通常用于获取飞机的状态,例如是否上电、是否解锁、当前飞行模式等。 - 使用 `ros::Subscriber` 类型的 `state_sub` 对 `mavros/state` 进行了订阅,并指定了回调函数 `state_cb`。每当接收到 `mavros_msgs::State` 类型的消息时,就会调用回调函数 `state_cb`,将收到的消息赋值给全局变量 `current_state`。 - 使用 `ros::ServiceClient` 类型的 `arming_client` 和 `set_mode_client` 对 `mavros/cmd/arming` 和 `mavros/set_mode` 进行了服务调用。这两个服务通常用于解锁飞机和切换飞行模式。 - 使用 `ros::Rate` 类型的 `rate` 对发布频率进行了限制,设置为 20Hz。 需要注意的是,这段代码中的消息类型和话题名字可能与您的实际应用有所不同。

/mavros/setpoint_velocity/ c++ 怎么使用

/mavros/setpoint_velocity/是ROS中与Mavros飞控通信的一个节点,通过该节点可以向飞控发送速度控制指令。下面是使用C++编写/mavros/setpoint_velocity/节点的基本步骤: 1. 导入必要的头文件 ```c++ #include <ros/ros.h> #include <geometry_msgs/TwistStamped.h> #include <mavros_msgs/GlobalPositionTarget.h> #include <mavros_msgs/State.h> #include <mavros_msgs/SetMode.h> #include <mavros_msgs/CommandBool.h> ``` 2. 定义全局变量和ROS回调函数 ```c++ // 定义全局变量 mavros_msgs::State current_state; geometry_msgs::TwistStamped vel_cmd; // 定义回调函数 void state_cb(const mavros_msgs::State::ConstPtr& msg) { current_state = *msg; } void vel_cmd_cb(const geometry_msgs::TwistStamped::ConstPtr& msg) { vel_cmd = *msg; } ``` 3. 初始化节点和订阅话题 ```c++ int main(int argc, char **argv) { ros::init(argc, argv, "setpoint_velocity_node"); ros::NodeHandle nh; // 订阅当前飞控状态和速度指令 ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/state", 10, state_cb); ros::Subscriber vel_cmd_sub = nh.subscribe<geometry_msgs::TwistStamped>("mavros/setpoint_velocity/cmd_vel", 10, vel_cmd_cb); // 创建发布器 ros::Publisher vel_pub = nh.advertise<geometry_msgs::TwistStamped>("mavros/setpoint_velocity/cmd_vel", 10); // 设置循环频率 ros::Rate rate(20.0); } ``` 4. 控制飞行器 在ROS的循环中,根据当前状态和速度指令控制飞行器。 ```c++ while (ros::ok()) { // 判断当前状态是否可以控制飞行器 if (current_state.mode == "OFFBOARD" && current_state.armed) { // 发布速度指令 vel_pub.publish(vel_cmd); } // 循环等待 ros::spinOnce(); rate.sleep(); } ``` 完整的/mavros/setpoint_velocity/节点代码如下: ```c++ #include <ros/ros.h> #include <geometry_msgs/TwistStamped.h> #include <mavros_msgs/GlobalPositionTarget.h> #include <mavros_msgs/State.h> #include <mavros_msgs/SetMode.h> #include <mavros_msgs/CommandBool.h> // 定义全局变量 mavros_msgs::State current_state; geometry_msgs::TwistStamped vel_cmd; // 定义回调函数 void state_cb(const mavros_msgs::State::ConstPtr& msg) { current_state = *msg; } void vel_cmd_cb(const geometry_msgs::TwistStamped::ConstPtr& msg) { vel_cmd = *msg; } int main(int argc, char **argv) { ros::init(argc, argv, "setpoint_velocity_node"); ros::NodeHandle nh; // 订阅当前飞控状态和速度指令 ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/state", 10, state_cb); ros::Subscriber vel_cmd_sub = nh.subscribe<geometry_msgs::TwistStamped>("mavros/setpoint_velocity/cmd_vel", 10, vel_cmd_cb); // 创建发布器 ros::Publisher vel_pub = nh.advertise<geometry_msgs::TwistStamped>("mavros/setpoint_velocity/cmd_vel", 10); // 设置循环频率 ros::Rate rate(20.0); while (ros::ok()) { // 判断当前状态是否可以控制飞行器 if (current_state.mode == "OFFBOARD" && current_state.armed) { // 发布速度指令 vel_pub.publish(vel_cmd); } // 循环等待 ros::spinOnce(); rate.sleep(); } return 0; } ```

相关推荐

更正这个Python代码import rospy from mavros_msgs.msg import State from mavros_msgs.srv import CommandBool, SetMode from geometry_msgs.msg import PoseStamped import time current_state = State() def state_cb(msg): global current_state current_state = msg rospy.init_node('position') rate = rospy.Rate(20.0) state_sub = rospy.Subscriber("mavros/state", State, state_cb) local_pos_pub = rospy.Publisher("mavros/setpoint_position/local", PoseStamped, queue_size=10) arming_client = rospy.ServiceProxy("mavros/cmd/arming", CommandBool) set_mode_client = rospy.ServiceProxy("mavros/set_mode", SetMode) wait for FCU connection while not rospy.is_shutdown() and not current_state.connected: rate.sleep() pose = PoseStamped() pose.pose.position.x = 0 pose.pose.position.y = 0 pose.pose.position.z = 1.5 offb_set_mode = SetMode() offb_set_mode.custom_mode = "OFFBOARD" arm_cmd = CommandBool() arm_cmd.value = True state = 3 last_request = rospy.Time.now() while not rospy.is_shutdown() and (rospy.Time.now() - last_request < rospy.Duration(5.0)): if not current_state.armed: if arming_client(arm_cmd) and arm_cmd.response.success: rospy.loginfo("Vehicle armed") if current_state.mode != "OFFBOARD": if set_mode_client(offb_set_mode) and offb_set_mode.response.mode_sent: rospy.loginfo("Offboard enabled") rate.sleep() while state > 0: last_request = rospy.Time.now() while not rospy.is_shutdown() and (rospy.Time.now() - last_request < rospy.Duration(5.0)): pose.pose.position.x = 0 pose.pose.position.y = 0 local_pos_pub.publish(pose) rospy.loginfo("SUCCESS0") rate.sleep() last_request = rospy.Time.now() while not rospy.is_shutdown() and (rospy.Time.now() - last_request < rospy.Duration(5.0)): pose.pose.position.x = 2 pose.pose.position.y = 2 local_pos_pub.publish(pose) rospy.loginfo("SUCCESS1") rate.sleep() state -= 1 rospy.loginfo("state=" + str(state)) offb_set_mode.custom_mode = "AUTO.LAND" if set_mode_client(offb_set_mode) and offb_set_mode.response.mode_sent: rospy.loginfo("AUTO.LAND enabled") last_request = rospy.Time.now() rospy.spin()

最新推荐

recommend-type

setuptools-58.0.3.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

变压器DGA溶解气体数据(357组)

包含六种故障类型: 中低温过热 高温过热 低能放电 高能放电 局部放电 正常 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111需要直接下载就可
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。