|ab|=|a||b|证明
时间: 2024-06-18 22:06:16 浏览: 270
数学公式证明
这是向量的模长公式,可以通过向量的内积和三角函数证明。假设向量 a 和向量 b 的夹角为 θ,则有:
|a · b| = |a||b| cosθ
其中,a · b 表示向量 a 和向量 b 的内积,即 a1b1 + a2b2 + ... + anbn;|a| 表示向量 a 的模长,即 √(a1² + a2² + ... + an²);|b| 同理。
由于内积可以表示成两个向量模长和夹角余弦值的乘积,所以可以将上式变形为:
cosθ = (a · b) / (|a||b|)
再由余弦定理可得:
|a + b|² = |a|² + |b|² + 2|a||b|cosθ
代入前面的式子,得到:
|a + b|² = |a|² + |b|² + 2|a||b|(a · b) / (|a||b|)
= |a|² + |b|² + 2(a · b)
由于 |a + b|² = (a + b)·(a + b) = a·a + 2a·b + b·b = |a|² + |b|² + 2(a · b),所以:
|a + b|² = |a|² + |b|² + 2(a · b) = (|a + b|)²
两边同时开根号,得到:
|a + b| = |a||b|
因此,证明了向量的模长公式:|ab|=|a||b|。
阅读全文