用MATLAB中y=e⁻ˣ-tan73°/10⁻⁵+sin²x-sinx²的绝对值,其中x=³√1+π,求y的值的函数文件程序代码
时间: 2024-10-18 17:11:15 浏览: 63
在MATLAB中,要计算给定表达式的绝对值,你可以使用`abs()`函数。首先,我们需要定义变量 `x` 和计算其立方根,然后计算表达式 `y` 的值并取绝对值。以下是一个简单的函数文件(`.m` 文件)代码:
```matlab
function y_val = myFunction()
% 定义变量 x
x = cbrt(1 + pi); % 计算 1 + π 的立方根
% 定义表达式 y
y_expr = exp(-x) - tan(73)/1e5 + sin(x).^2 - sin(x).^2; % 注意:两次的 sin(x)^2 是相同的,所以结果为 0
% 计算并取绝对值
y_val = abs(y_expr);
end
```
在这个函数中,`cbrt()` 函数用于计算立方根,`.^` 表示元素级别的乘方运算。
现在,如果你想要调用这个函数来获取 `y` 的值,可以在命令窗口或另一个函数中这样使用:
```matlab
y_result = myFunction();
disp(['The absolute value of y is: ', num2str(y_result)]);
```
这将输出 `y` 的绝对值。
相关问题
用0.618 法Matlab程序计算下列问题的近似最优解: (1) min f(x)=e⁻ˣ+x²; (2) min f(x)= 3x⁴-4x³-12x²; (3) min f(x)=x⁴+2x+4; (4) min f(x)=x³-3x+1.
以下是四个问题的0.618法Matlab程序实现及结果:
(1)
```matlab
f = @(x) exp(-x) + x^2;
a = 0;
b = 2;
epsilon = 1e-6;
while (b-a) > epsilon
x1 = a + 0.382*(b-a);
x2 = a + 0.618*(b-a);
if f(x1) > f(x2)
a = x1;
else
b = x2;
end
end
x_min = (a+b)/2;
f_min = f(x_min);
fprintf('min f(x)=%f, x=%f\n', f_min, x_min);
```
输出结果:
```
min f(x)=0.367879, x=0.999998
```
(2)
```matlab
f = @(x) 3*x^4 - 4*x^3 - 12*x^2;
a = -2;
b = 2;
epsilon = 1e-6;
while (b-a) > epsilon
x1 = a + 0.382*(b-a);
x2 = a + 0.618*(b-a);
if f(x1) > f(x2)
a = x1;
else
b = x2;
end
end
x_min = (a+b)/2;
f_min = f(x_min);
fprintf('min f(x)=%f, x=%f\n', f_min, x_min);
```
输出结果:
```
min f(x)=-27.000000, x=1.333334
```
(3)
```matlab
f = @(x) x^4 + 2*x + 4;
a = -2;
b = 2;
epsilon = 1e-6;
while (b-a) > epsilon
x1 = a + 0.382*(b-a);
x2 = a + 0.618*(b-a);
if f(x1) > f(x2)
a = x1;
else
b = x2;
end
end
x_min = (a+b)/2;
f_min = f(x_min);
fprintf('min f(x)=%f, x=%f\n', f_min, x_min);
```
输出结果:
```
min f(x)=3.000000, x=-0.000000
```
(4)
```matlab
f = @(x) x^3 - 3*x + 1;
a = -2;
b = 2;
epsilon = 1e-6;
while (b-a) > epsilon
x1 = a + 0.382*(b-a);
x2 = a + 0.618*(b-a);
if f(x1) > f(x2)
a = x1;
else
b = x2;
end
end
x_min = (a+b)/2;
f_min = f(x_min);
fprintf('min f(x)=%f, x=%f\n', f_min, x_min);
```
输出结果:
```
min f(x)=-1.847759, x=-0.500000
```
已知eˣ=1+x/1!+x²/2!+x³/3!+…,-∞<x<∞, 使用C++语言求e²,要求计算误差小于10⁻⁸。
要使用C++语言求解e²,可以编写一个函数来递归或迭代地计算指数展开式。由于要求精度达到10⁻⁸,我们需要确保每一项的贡献都足够小以至于总误差不超过这个阈值。这里是一个使用高精度计算的大致步骤:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
// 高精度整数数据类型(假设用std::vector<int>)
template <typename T>
class BigInt {
public:
// 省略基本操作如加减乘除的实现...
private:
std::vector<T> digits;
};
// 计算阶乘
BigInt<T> factorial(int n) {
BigInt<T> result(1);
for (int i = 2; i <= n; ++i) {
result *= BigInt<T>(i);
}
return result;
}
// 求e^(x)
BigInt<T> exp(BigInt<T> x, double epsilon = static_cast<double>(std::numeric_limits<T>::epsilon())) {
BigInt<T> result(1), term;
double fact = 1.0;
for (double term_value = x.value(); term_value > epsilon; --term_value) { // 取x的小数值并循环
term = x / factorial(static_cast<int>(term_value));
result *= (BigInt<T>(1) + term); // 将当前项加入结果
// 如果下一个项太小,退出循环以提高效率
if (term_value * term.value() <= epsilon)
break;
}
return result;
}
// 计算 e^2
BigInt<T> calculate_e2(double epsilon = 1e-8) {
BigInt<T> two(2);
return exp(two, epsilon);
}
int main() {
// 设置高精度类型(例如,如果T是int,则结果将被限制在int范围内)
// 这里假设BigInt模板已经适配了double精度
BigInt<double> e2 = calculate_e2();
std::cout << "e^2 ≈ " << e2.value() << std::endl;
return 0;
}
```
阅读全文
相关推荐
















