如果我想要一个最大池化操作,输入为3x3, 池化的窗口为2x2,输出为2x2,求pytorch代码
时间: 2023-04-06 21:03:18 浏览: 99
可以使用torch.nn.MaxPool2d函数实现最大池化操作,代码如下:
import torch
input_tensor = torch.randn(1, 1, 3, 3) # 输入为1个通道,大小为3x3的张量
max_pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) # 池化窗口为2x2,步长为2
output_tensor = max_pool(input_tensor) # 输出为1个通道,大小为2x2的张量
print(output_tensor) # 输出结果为大小为2x2的张量
相关问题
如果我想要一个最大池化操作,输入为3x3, 池化的窗口为2x2,输出为2x2,不显式指明参数,求pytorch代码
import torch.nn as nn
maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
input_tensor = torch.randn(1, 1, 3, 3)
output_tensor = maxpool(input_tensor)
print(output_tensor.size()) # 输出为torch.Size([1, 1, 2, 2])
给我一份在pytorch框架下attention_unet的代码,输出特征图维度为3
好的,以下是在PyTorch框架下实现的attention_unet代码,输出特征图维度为3:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class AttentionBlock(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(AttentionBlock, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
class UpSample(nn.Module):
def __init__(self, in_channels, out_channels, bilinear=True):
super(UpSample, self).__init__()
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class AttentionUNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(AttentionUNet, self).__init__()
self.down1 = DoubleConv(in_channels, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.center = DoubleConv(512, 1024)
self.up4 = UpSample(1024, 512)
self.att4 = AttentionBlock(512, 256, 128)
self.up3 = UpSample(512, 256)
self.att3 = AttentionBlock(256, 128, 64)
self.up2 = UpSample(256, 128)
self.att2 = AttentionBlock(128, 64, 32)
self.up1 = UpSample(128, 64)
self.att1 = AttentionBlock(64, 32, 16)
self.output = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.down1(x)
x2 = self.pool1(x1)
x2 = self.down2(x2)
x3 = self.pool2(x2)
x3 = self.down3(x3)
x4 = self.pool3(x3)
x4 = self.down4(x4)
x5 = self.pool4(x4)
x5 = self.center(x5)
x = self.up4(x5, x4)
x = self.att4(g=x4, x=x)
x = self.up3(x, x3)
x = self.att3(g=x3, x=x)
x = self.up2(x, x2)
x = self.att2(g=x2, x=x)
x = self.up1(x, x1)
x = self.att1(g=x1, x=x)
x = self.output(x)
return x
```
注意到这里的输出特征图维度为3,因此我们在最后的`nn.Conv2d`中将输出通道数设为3。如果需要修改输入输出维度以及网络结构,可以根据实际情况进行修改。
阅读全文