编写一个递归函数,近似地计算黄金分割。计算公式如下: f(N) =1 如果 N=0 /(N)=1+1//(N-1) 如果 N>0 其中,N 是用户输入的整数。

时间: 2024-06-01 22:09:43 浏览: 77
def golden_ratio(n): if n == 0: return 1 elif n == 1: return 1 else: return 1/(1+golden_ratio(n-1)) n = int(input("请输入一个整数:")) print("黄金分割的近似值为:", golden_ratio(n))
相关问题

编写一个递归函数,近似的计算黄金分割。计算公式如下:f(N)=1 如果N=0

黄金分割是一个比较特殊的数学常数,可以用递归函数来近似计算。根据公式,当N=0时,黄金分割的值为1。当N>0时,黄金分割的值可以通过以下公式计算: f(N) = 1/(1+f(N-1)) 以下是用Python编写的递归函数来计算黄金分割: ```python def golden_ratio(N): if N == 0: return 1 return 1 / (1 + golden_ratio(N-1)) ``` 这个函数会递归地调用自身来计算黄金分割的值,并且当N=0时返回1作为黄金分割的值。你可以将任何正整数值N传递给这个函数,它都会返回一个近似的黄金分割值。

编写一个递归函数,近似计算黄金分割,计算公式如下:f(N)=1 如果N=0 f(N)=1+1/f(N-1) 如果N》0 其中,N是用户输入的整数

好的,这里是一个使用递归方法来计算黄金分割的示例代码,计算公式如下:f(N)=1 如果N=0 f(N)=1+1/f(N-1) 如果N》0: ``` def golden_ratio(n): if n == 0: return 1 else: return 1 + 1 / golden_ratio(n-1) # 获取用户输入 N = int(input("请输入一个整数:")) # 计算黄金分割 approximation = golden_ratio(N) # 打印结果 print("黄金分割的近似值为:", approximation) ``` 在上面的代码中,golden_ratio() 函数使用递归来计算黄金分割的近似值。递归函数在 n 等于 0 时返回 1,否则返回 1 加上 1 除以 golden_ratio(n-1) 的值。在这个函数中,递归的深度决定了计算的精度。如果递归的深度越深,则计算得到的黄金分割值越精确。 请注意,这个函数的递归深度可能会很大,所以要谨慎使用。如果递归深度太大,可能会导致栈溢出或其他问题。建议在调用函数时使用较小的参数值,并根据需要逐步增加递归深度。

相关推荐

最新推荐

recommend-type

python递归函数求n的阶乘,优缺点及递归次数设置方式

首先,让我们看看如何用Python编写一个计算阶乘的递归函数。阶乘的定义是对于非负整数n,n的阶乘表示为所有小于等于n的正整数的乘积,记作n!。例如,5! = 5 × 4 × 3 × 2 × 1 = 120。下面是一个简单的递归函数...
recommend-type

python递归计算N!的方法

如果n不等于0,函数会执行递归调用`factorial(n - 1)`,并将结果与n相乘。这个过程会一直持续到n减小到0,然后逐层返回结果,最终得到n的阶乘。 例如,计算5的阶乘时,函数调用序列如下: 1. `factorial(5)` → `5 ...
recommend-type

Python入门程序 函数应用(判断素数、递归求n的阶乘、x的n次方、最大最小值、插入排序法)

用户输入一个整数n,函数`fac(n)`会返回n的阶乘。 3. **x的n次方** `xn`函数使用递归来计算x的n次方。当n等于0时,返回1;否则,它计算x乘以x的(n-1)次方。用户输入x和n,函数会返回x的n次方。这里还处理了n为负数...
recommend-type

MyBatis之自查询使用递归实现 N级联动效果(两种实现方式)

MyBatis是一个功能强大且灵活的持久层框架,它支持自查询和递归查询,下面我们将探讨如何使用MyBatis实现 N级联动效果。 递归查询 递归查询是指在一个查询中调用自身的查询,以便实现某些复杂的查询逻辑。在...
recommend-type

武汉科技大学在广东2021-2024各专业最低录取分数及位次表.pdf

全国各大学在广东2021-2024各专业最低录取分数及位次表
recommend-type

AirKiss技术详解:无线传递信息与智能家居连接

AirKiss原理是一种创新的信息传输技术,主要用于解决智能设备与外界无物理连接时的网络配置问题。传统的设备配置通常涉及有线或无线连接,如通过路由器的Web界面输入WiFi密码。然而,AirKiss技术简化了这一过程,允许用户通过智能手机或其他移动设备,无需任何实际连接,就能将网络信息(如WiFi SSID和密码)“隔空”传递给目标设备。 具体实现步骤如下: 1. **AirKiss工作原理示例**:智能插座作为一个信息孤岛,没有物理连接,通过AirKiss技术,用户的微信客户端可以直接传输SSID和密码给插座,插座收到这些信息后,可以自动接入预先设置好的WiFi网络。 2. **传统配置对比**:以路由器和无线摄像头为例,常规配置需要用户手动设置:首先,通过有线连接电脑到路由器,访问设置界面输入运营商账号和密码;其次,手机扫描并连接到路由器,进行子网配置;最后,摄像头连接家庭路由器后,会自动寻找厂商服务器进行心跳包发送以保持连接。 3. **AirKiss的优势**:AirKiss技术简化了配置流程,减少了硬件交互,特别是对于那些没有显示屏、按键或网络连接功能的设备(如无线摄像头),用户不再需要手动输入复杂的网络设置,只需通过手机轻轻一碰或发送一条消息即可完成设备的联网。这提高了用户体验,降低了操作复杂度,并节省了时间。 4. **应用场景扩展**:AirKiss技术不仅适用于智能家居设备,也适用于物联网(IoT)场景中的各种设备,如智能门锁、智能灯泡等,只要有接收AirKiss信息的能力,它们就能快速接入网络,实现远程控制和数据交互。 AirKiss原理是利用先进的无线通讯技术,结合移动设备的便利性,构建了一种无需物理连接的设备网络配置方式,极大地提升了物联网设备的易用性和智能化水平。这种技术在未来智能家居和物联网设备的普及中,有望发挥重要作用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

交叉验证全解析:数据挖掘中的黄金标准与优化策略

![交叉验证全解析:数据挖掘中的黄金标准与优化策略](https://img-blog.csdnimg.cn/img_convert/eff0a03452b18f6b259f99cebef24bd9.png) # 1. 交叉验证的基本概念和重要性 ## 1.1 交叉验证的定义 交叉验证是一种统计方法,用于评估并改进机器学习模型的泛化能力。它通过将数据集分为几个小的“折”(或称为“子集”),然后迭代使用这些数据子集来训练和测试模型,从而得到模型性能的更准确估计。 ## 1.2 交叉验证的重要性 在机器学习过程中,我们通常面临一个重要的问题:模型可能对训练数据过度拟合,而不能很好地推广到新数据
recommend-type

在交换机上创建 VLAN10、VLAN20和VLAN30,将交换机 B 的 2-5 接口加入到 VLAN 10 中 用ensp写出配置命令

在交换机上配置VLAN并分配接口到特定的VLAN中,通常需要登录到交换机的命令行界面。以下是在华为交换机上使用eNSP(Enterprise Network Simulation Platform,企业网络模拟平台)模拟器进行VLAN配置的基本步骤和命令: 首先,进入系统视图: ``` system-view ``` 然后创建VLAN10、VLAN20和VLAN30: ``` vlan 10 vlan 20 vlan 30 ``` 接下来,将交换机B的2到5端口加入到VLAN10中,假设交换机B的接口编号为GigabitEthernet0/0/2至GigabitEthernet0/0/5
recommend-type

Hibernate主键生成策略详解

"Hibernate各种主键生成策略与配置详解" 在关系型数据库中,主键是表中的一个或一组字段,用于唯一标识一条记录。在使用Hibernate进行持久化操作时,主键的生成策略是一个关键的配置,因为它直接影响到数据的插入和管理。以下是Hibernate支持的各种主键生成策略的详细解释: 1. assigned: 这种策略要求开发者在保存对象之前手动设置主键值。Hibernate不参与主键的生成,因此这种方式可以跨数据库,但并不推荐,因为可能导致数据一致性问题。 2. increment: Hibernate会从数据库中获取当前主键的最大值,并在内存中递增生成新的主键。由于这个过程不依赖于数据库的序列或自增特性,它可以跨数据库使用。然而,当多进程并发访问时,可能会出现主键冲突,导致Duplicate entry错误。 3. hilo: Hi-Lo算法是一种优化的增量策略,它在一个较大的范围内生成主键,减少数据库交互。在每个session中,它会从数据库获取一个较大的范围,然后在内存中分配,降低主键碰撞的风险。 4. seqhilo: 类似于hilo,但它使用数据库的序列来获取范围,适合Oracle等支持序列的数据库。 5. sequence: 这个策略依赖于数据库提供的序列,如Oracle、PostgreSQL等,直接使用数据库序列生成主键,保证全局唯一性。 6. identity: 适用于像MySQL这样的数据库,它们支持自动增长的主键。Hibernate在插入记录时让数据库自动为新行生成主键。 7. native: 根据所连接的数据库类型,自动选择最合适的主键生成策略,如identity、sequence或hilo。 8. uuid: 使用UUID算法生成128位的唯一标识符,适用于分布式环境,无需数据库支持。 9. guid: 类似于uuid,但根据不同的实现可能会有所不同,通常在Windows环境下生成的是GUID字符串。 10. foreign: 通过引用另一个表的主键来生成当前表的主键,适用于关联实体的情况。 11. select: 在插入之前,通过执行SQL查询来获取主键值,这种方式需要开发者提供定制的SQL语句。 12. 注释方式配置: 可以通过在Java实体类的@Id和@GeneratedValue注解中指定generator属性来配置自定义的主键生成策略。 13. 小结: Hibernate的主键生成策略选择应基于数据库特性、性能需求以及是否需要跨数据库兼容等因素。在实际应用中,需要根据项目具体需求选择最适合的策略。 注意,合理选择主键生成策略对于数据库性能和数据一致性至关重要。例如,increment策略在多进程环境下可能会出现问题,而sequence和identity策略则更安全,但可能不适合所有数据库系统。因此,开发者应充分理解每种策略的优缺点,并结合实际情况作出决策。