train_sample = train_sample.transpose((0, 3, 1, 2))

时间: 2023-10-06 11:13:29 浏览: 32
This line of code transposes the dimensions of the NumPy array called `train_sample`. Specifically, it reorders the dimensions of the array so that the elements in the second dimension (originally representing width) become the third dimension, and the elements in the third dimension (originally representing height) become the second dimension. The new order of dimensions is `(0, 3, 1, 2)`, where: - `0`: represents the samples (i.e., individual images) in the array - `3`: represents the channels (i.e., color channels) in the array - `1`: represents the new width dimension - `2`: represents the new height dimension This operation is commonly used in deep learning frameworks like TensorFlow and PyTorch to ensure that the data is in the correct format for training models. By transposing the dimensions in this way, the data is ready to be passed to a convolutional neural network (CNN) for feature extraction and classification.

相关推荐

以下是一个简单的使用TCN进行端到端多分类的代码示例,使用PyTorch实现: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset # 定义TCN模型 class TemporalBlock(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation): super(TemporalBlock, self).__init__() padding = (kernel_size - 1) * dilation self.conv1 = nn.Conv1d(n_inputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(0.2) self.conv2 = nn.Conv1d(n_outputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(0.2) self.net = nn.Sequential(self.conv1, self.relu1, self.dropout1, self.conv2, self.relu2, self.dropout2) self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None self.relu = nn.ReLU() def forward(self, x): out = self.net(x) res = x if self.downsample is None else self.downsample(x) return self.relu(out + res) class TemporalConvNet(nn.Module): def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): super(TemporalConvNet, self).__init__() layers = [] num_levels = len(num_channels) for i in range(num_levels): dilation_size = 2 ** i in_channels = num_inputs if i == 0 else num_channels[i-1] out_channels = num_channels[i] layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size)] self.network = nn.Sequential(*layers) self.fc = nn.Linear(num_channels[-1], num_classes) def forward(self, x): out = self.network(x) out = out[:, :, -1] out = self.fc(out) return out # 加载数据 X_train, y_train = load_data('train_data.csv') # 加载训练数据 X_val, y_val = load_data('val_data.csv') # 加载验证数据 X_test, y_test = load_data('test_data.csv') # 加载测试数据 # 转换数据为Tensor格式 X_train = torch.tensor(X_train, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.long) X_val = torch.tensor(X_val, dtype=torch.float32) y_val = torch.tensor(y_val, dtype=torch.long) X_test = torch.tensor(X_test, dtype=torch.float32) y_test = torch.tensor(y_test, dtype=torch.long) # 将数据放入DataLoader中 train_dataset = TensorDataset(X_train, y_train) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_dataset = TensorDataset(X_val, y_val) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False) test_dataset = TensorDataset(X_test, y_test) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义超参数 num_inputs = X_train.shape[1] num_channels = [64, 64, 64, 64] kernel_size = 3 dropout = 0.2 num_classes = 10 lr = 0.001 num_epochs = 100 # 定义模型、损失函数和优化器 model = TemporalConvNet(num_inputs, num_channels, kernel_size, dropout) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=lr) # 训练模型 for epoch in range(num_epochs): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 model.train() # 训练模式 for X, y in train_loader: optimizer.zero_grad() y_pred = model(X.transpose(1,2)) loss = criterion(y_pred, y) loss.backward() optimizer.step() train_loss += loss.item() * X.size(0) train_acc += (y_pred.argmax(dim=1) == y).sum().item() model.eval() # 验证模式 with torch.no_grad(): for X, y in val_loader: y_pred = model(X.transpose(1,2)) loss = criterion(y_pred, y) val_loss += loss.item() * X.size(0) val_acc += (y_pred.argmax(dim=1) == y).sum().item() print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'.format( epoch+1, num_epochs, train_loss/len(train_dataset), train_acc/len(train_dataset), val_loss/len(val_dataset), val_acc/len(val_dataset) )) # 测试模型 test_acc = 0.0 model.eval() with torch.no_grad(): for X, y in test_loader: y_pred = model(X.transpose(1,2)) test_acc += (y_pred.argmax(dim=1) == y).sum().item() print('Test Acc: {:.4f}'.format(test_acc/len(test_dataset))) 这个代码实现了一个使用TCN进行端到端多分类的例子,包括加载数据、定义模型、训练模型、测试模型等步骤。需要注意的是,在TCN中使用的是一维卷积,所以需要将输入数据从二维张量转换为三维张量,其中第一维是batch_size,第二维是时间步,第三维是特征维度。同时需要将输出结果从三维张量取出最后一个时间步的结果,作为全连接层的输入。
Word2Vec是一种常用的词向量表示方法,它通过神经网络模型将单词映射到向量空间中,从而可以直接使用向量进行文本处理和分析。下面是一个简单的Word2Vec实现代码,使用Python语言和TensorFlow框架。 首先需要准备一个文本数据集,这里使用了一个小型的英文新闻文本数据集作为示例。代码需要先对数据进行预处理,将文本中的单词转换成数值表示。 python import tensorflow as tf import numpy as np import collections import os # 读取数据 def read_data(filename): with open(filename, 'r') as f: data = f.read().split() return data # 构建词汇表 def build_vocab(data, vocab_size): # 统计单词出现频次 word_count = [['UNK', -1]] word_count.extend(collections.Counter(data).most_common(vocab_size - 1)) # 创建词汇表 vocab_dict = {} for word, count in word_count: vocab_dict[word] = len(vocab_dict) # 将数据集中的单词转换为数值表示 data_vocab = [] unk_count = 0 for word in data: if word in vocab_dict: index = vocab_dict[word] else: index = 0 # UNK unk_count += 1 data_vocab.append(index) word_count[0][1] = unk_count return data_vocab, vocab_dict, word_count # 生成训练数据 def generate_train_data(data, window_size): train_data = [] for i in range(len(data)): for j in range(1, window_size+1): if i-j >= 0: train_data.append([data[i], data[i-j]]) if i+j < len(data): train_data.append([data[i], data[i+j]]) return train_data # 读取数据集 data = read_data('news.txt') vocab_size = 5000 data, vocab_dict, word_count = build_vocab(data, vocab_size) train_data = generate_train_data(data, window_size=2) 接下来就是Word2Vec模型的构建,这里使用了Skip-gram模型。模型的输入是一个单词的数值表示,输出是它周围的单词的数值表示,即使用一个单词预测它的上下文。模型的核心是一个嵌入层,将每个单词映射到一个向量空间中,然后使用点积计算相似度。 python # 定义Word2Vec模型 class Word2Vec: def __init__(self, vocab_size, embed_size): self.vocab_size = vocab_size self.embed_size = embed_size self.inputs = tf.placeholder(tf.int32, [None]) self.labels = tf.placeholder(tf.int32, [None, 1]) # 定义嵌入层 with tf.variable_scope('embed'): self.embeddings = tf.Variable(tf.random_uniform([vocab_size, embed_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(self.embeddings, self.inputs) # 定义输出层 with tf.variable_scope('output'): self.weights = tf.Variable(tf.truncated_normal([vocab_size, embed_size], stddev=1.0 / np.sqrt(embed_size))) self.biases = tf.Variable(tf.zeros([vocab_size])) self.logits = tf.matmul(embed, tf.transpose(self.weights)) + self.biases # 定义损失函数和优化器 self.loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(self.weights, self.biases, self.labels, embed, num_sampled=1000, num_classes=vocab_size)) self.optimizer = tf.train.AdagradOptimizer(learning_rate=0.1).minimize(self.loss) # 定义训练函数 def train_word2vec(train_data, vocab_size, embed_size, num_epochs, batch_size, save_path): tf.reset_default_graph() model = Word2Vec(vocab_size, embed_size) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) total_loss = 0.0 for epoch in range(num_epochs): np.random.shuffle(train_data) for i in range(0, len(train_data), batch_size): batch_inputs, batch_labels = [], [] for j in range(i, min(i+batch_size, len(train_data))): batch_inputs.append(train_data[j][0]) batch_labels.append([train_data[j][1]]) loss, _ = sess.run([model.loss, model.optimizer], feed_dict={model.inputs: batch_inputs, model.labels: batch_labels}) total_loss += loss if epoch % 10 == 0: print('Epoch %d, average loss: %.4f' % (epoch, total_loss / len(train_data))) total_loss = 0.0 # 保存模型 if not os.path.exists(save_path): os.mkdir(save_path) model_file = os.path.join(save_path, 'word2vec.ckpt') saver = tf.train.Saver() saver.save(sess, model_file) # 训练Word2Vec模型 embed_size = 100 num_epochs = 100 batch_size = 512 save_path = 'model' train_word2vec(train_data, vocab_size, embed_size, num_epochs, batch_size, save_path) 训练完成后,就可以使用训练好的模型进行单词向量的表示和相似度计算了。代码如下: python # 加载模型 def load_word2vec(vocab_dict, embed_size, save_path): tf.reset_default_graph() model = Word2Vec(len(vocab_dict), embed_size) with tf.Session() as sess: model_file = os.path.join(save_path, 'word2vec.ckpt') saver = tf.train.Saver() saver.restore(sess, model_file) embeddings = sess.run(model.embeddings) # 创建词向量字典 word_vectors = {} for word, index in vocab_dict.items(): word_vectors[word] = embeddings[index] return word_vectors # 计算单词相似度 def calc_similarity(word1, word2, word_vectors): vec1 = word_vectors[word1] vec2 = word_vectors[word2] sim = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) return sim # 加载模型并计算相似度 word_vectors = load_word2vec(vocab_dict, embed_size, save_path) print(calc_similarity('man', 'woman', word_vectors)) 以上就是一个简单的Word2Vec实现代码,可以用于生成单词向量并计算相似度。实际应用中,可以根据需求对模型进行优化和改进。
DBN(深度信念网络)是一种无监督学习算法,常用于处理高维数据的特征提取和分类任务。下面是使用TensorFlow实现DBN进行信号分类的示例代码: python import tensorflow as tf from tensorflow.contrib import learn # 加载数据集 data = learn.datasets.load_dataset('your_dataset') # 替换为你的数据集 # 数据预处理 x_train = data.train.images y_train = data.train.labels x_test = data.test.images y_test = data.test.labels # 构建DBN模型 n_visible = x_train.shape[1] # 输入层节点数(特征数) n_hidden = 300 # 隐层节点数(可以根据具体任务进行调整) # 定义可见层和隐层 x = tf.placeholder("float", [None, n_visible]) # 可见层节点 W = tf.placeholder("float", [n_visible, n_hidden]) # 隐层权重 b_visible = tf.placeholder("float", [n_visible]) # 可见层偏置 b_hidden = tf.placeholder("float", [n_hidden]) # 隐层偏置 # DBN前向传播 def propup(layer, W, b): return tf.nn.sigmoid(tf.matmul(layer, W) + b) # DBN反向传播 def propdown(layer, W, b): return tf.nn.sigmoid(tf.matmul(layer, tf.transpose(W)) + b) # DBN重构 def sample_h_given_v(v0_sample): h0_mean = propup(v0_sample, W, b_hidden) h0_sample = tf.nn.relu(tf.sign(h0_mean - tf.random_uniform(tf.shape(h0_mean)))) # 随机采样 return h0_mean, h0_sample def sample_v_given_h(h0_sample): v1_mean = propdown(h0_sample, W, b_visible) v1_sample = tf.nn.relu(tf.sign(v1_mean - tf.random_uniform(tf.shape(v1_mean)))) # 随机采样 return v1_mean, v1_sample # 训练DBN h0_mean, h0_sample = sample_h_given_v(x) v1_mean, v1_sample = sample_v_given_h(h0_sample) h1_mean, h1_sample = sample_h_given_v(v1_sample) learning_rate = 0.1 # 学习率 k = 1 # CD-k采样次数 W_update = W + learning_rate * (tf.matmul(tf.transpose(x), h0_mean) - tf.matmul(tf.transpose(v1_sample), h1_mean)) b_visible_update = b_visible + learning_rate * tf.reduce_mean(x - v1_sample, 0) b_hidden_update = b_hidden + learning_rate * tf.reduce_mean(h0_mean - h1_mean, 0) updt = [W.assign(W_update), b_visible.assign(b_visible_update), b_hidden.assign(b_hidden_update)] # 创建session并初始化变量 sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) # 执行CD-k过程 for epoch in range(10): # 迭代训练10次 for start, end in zip(range(0, len(x_train), 128), range(128, len(x_train), 128)): batch = x_train[start:end] sess.run(updt, feed_dict={x: batch}) # 使用DBN进行信号分类 h0, _ = sample_h_given_v(x_test) predicted_labels = tf.argmax(h0, axis=1) actual_labels = tf.argmax(y_test, axis=1) accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted_labels, actual_labels), tf.float32)) print("准确率:", sess.run(accuracy)) 需要替换代码中的your_dataset为真实的数据集名称,并根据具体任务调整参数。以上代码使用DBN进行特征提取,并通过隐层的输出进行信号分类,最后输出分类准确率。
好的,我可以给您提供一个可以运行的代码示例,但是由于我不知道您的具体数据集长什么样,所以这里我使用了随机生成的数据集。这个代码示例包含了如何使用MLP和GAT分别对数据集的0维数据进行预测的代码,以及如何使用PyTorch中的DataLoader和Dataset来加载数据集并进行批量处理,避免爆内存。 python import random import torch import torch.nn as nn import torch.utils.data as Data from torch_geometric.data import Data from torch_geometric.nn import GATConv # 生成随机数据集 data = torch.randn(1000, 1358, 12, 307, 2) label = torch.randn(1000, 1) # 定义MLP模型 class MLP(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MLP, self).__init__() self.layers = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, output_size) ) def forward(self, x): return self.layers(x) # 定义GAT模型 class GAT(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_heads): super(GAT, self).__init__() self.conv1 = GATConv(input_size, hidden_size, heads=num_heads) self.conv2 = GATConv(hidden_size * num_heads, output_size, heads=1) def forward(self, x, edge_index): x = F.dropout(x, p=0.6, training=self.training) x = F.elu(self.conv1(x, edge_index)) x = F.dropout(x, p=0.6, training=self.training) x = self.conv2(x, edge_index) return x.mean(dim=1) # 定义数据集 class TrafficDataset(Data.Dataset): def __init__(self, data, label, index): self.data = data self.label = label self.index = index def __getitem__(self, idx): x = self.data[:, self.index[idx], :, :, :] y = self.label return x, y def __len__(self): return len(self.index) # 定义数据集索引和边列表 index = list(range(1358)) edge_index = [(i, j) for i in index for j in index if i != j] # 划分训练和测试集 train_index = random.sample(index, 1000) test_index = list(set(index) - set(train_index)) # 定义数据集和数据加载器 train_data = TrafficDataset(data, label, train_index) test_data = TrafficDataset(data, label, test_index) train_loader = Data.DataLoader(train_data, batch_size=32, shuffle=True) test_loader = Data.DataLoader(test_data, batch_size=32, shuffle=False) # 定义模型和优化器 mlp = MLP(2, 64, 1) gat = GAT(12, 64, 1, 4) optimizer_mlp = torch.optim.Adam(mlp.parameters(), lr=0.001) optimizer_gat = torch.optim.Adam(gat.parameters(), lr=0.001) # 训练模型 for epoch in range(10): for x, y in train_loader: # 训练MLP模型 optimizer_mlp.zero_grad() x = x.view(-1, 2) y_pred_mlp = mlp(x) loss_mlp = nn.MSELoss()(y_pred_mlp, y) loss_mlp.backward() optimizer_mlp.step() # 训练GAT模型 optimizer_gat.zero_grad() x = x.view(-1, 12) edge_index_tensor = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) y_pred_gat = gat(x, edge_index_tensor) loss_gat = nn.MSELoss()(y_pred_gat, y) loss_gat.backward() optimizer_gat.step() # 输出训练结果 print(f"Epoch {epoch + 1}: MLP Loss={loss_mlp.item()}, GAT Loss={loss_gat.item()}") # 测试模型 with torch.no_grad(): mlp.eval() gat.eval() loss_mlp_sum = 0 loss_gat_sum = 0 for x, y in test_loader: x = x.view(-1, 2) y_pred_mlp = mlp(x) loss_mlp_sum += nn.MSELoss()(y_pred_mlp, y).item() x = x.view(-1, 12) edge_index_tensor = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) y_pred_gat = gat(x, edge_index_tensor) loss_gat_sum += nn.MSELoss()(y_pred_gat, y).item() print(f"MLP Test Loss={loss_mlp_sum / len(test_loader)}, GAT Test Loss={loss_gat_sum / len(test_loader)}") 在这个代码示例中,我们首先生成了一个随机数据集,并使用TrafficDataset和DataLoader对其进行划分和批量处理;然后定义了一个MLP模型和一个GAT模型,并使用Adam优化器进行训练;最后使用测试集对模型进行测试,并输出测试结果。
WaveGAN是一种基于GAN的生成模型,用于生成逼真的音频信号。在这里,我将为你提供WaveGAN-PyTorch的代码及代码解释。 首先,我们需要安装PyTorch和相应的依赖项。如果你已经安装了PyTorch,你可以跳过此步骤。 python !pip install torch !pip install librosa !pip install tqdm !pip install tensorboardX 接下来,我们可以开始编写代码。在这里,我将提供一个简单的WaveGAN模型,用于生成环境声音。 首先,我们需要导入所需的包: python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import librosa import librosa.display import matplotlib.pyplot as plt from tqdm import tqdm from tensorboardX import SummaryWriter 然后,我们定义一些常量和超参数: python SAMPLE_RATE = 22050 N_FFT = 1024 HOP_LENGTH = 512 N_MELS = 128 N_CHANNELS = 16 LATENT_DIM = 100 BATCH_SIZE = 64 N_EPOCHS = 100 LEARNING_RATE = 0.0002 BETA1 = 0.5 BETA2 = 0.999 EPSILON = 1e-8 接下来,我们定义生成器和判别器: python class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(LATENT_DIM, 4 * 4 * 512, bias=False) self.bn1 = nn.BatchNorm1d(4 * 4 * 512) self.up1 = nn.Upsample(scale_factor=2, mode='nearest') self.conv1 = nn.Conv1d(512, 256, kernel_size=9, stride=1, padding=4, bias=False) self.bn2 = nn.BatchNorm1d(256) self.up2 = nn.Upsample(scale_factor=2, mode='nearest') self.conv2 = nn.Conv1d(256, 128, kernel_size=9, stride=1, padding=4, bias=False) self.bn3 = nn.BatchNorm1d(128) self.up3 = nn.Upsample(scale_factor=2, mode='nearest') self.conv3 = nn.Conv1d(128, 64, kernel_size=9, stride=1, padding=4, bias=False) self.bn4 = nn.BatchNorm1d(64) self.conv4 = nn.Conv1d(64, N_CHANNELS, kernel_size=9, stride=1, padding=4) def forward(self, x): x = self.fc1(x) x = F.leaky_relu(self.bn1(x), negative_slope=0.2) x = x.view(-1, 512, 4) x = self.up1(x) x = self.conv1(x) x = F.leaky_relu(self.bn2(x), negative_slope=0.2) x = self.up2(x) x = self.conv2(x) x = F.leaky_relu(self.bn3(x), negative_slope=0.2) x = self.up3(x) x = self.conv3(x) x = F.leaky_relu(self.bn4(x), negative_slope=0.2) x = self.conv4(x) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv1 = nn.Conv1d(N_CHANNELS, 64, kernel_size=9, stride=1, padding=4, bias=False) self.bn1 = nn.BatchNorm1d(64) self.conv2 = nn.Conv1d(64, 128, kernel_size=9, stride=1, padding=4, bias=False) self.bn2 = nn.BatchNorm1d(128) self.conv3 = nn.Conv1d(128, 256, kernel_size=9, stride=1, padding=4, bias=False) self.bn3 = nn.BatchNorm1d(256) self.conv4 = nn.Conv1d(256, 512, kernel_size=9, stride=1, padding=4, bias=False) self.bn4 = nn.BatchNorm1d(512) self.fc1 = nn.Linear(4 * 4 * 512, 1) def forward(self, x): x = self.conv1(x) x = F.leaky_relu(self.bn1(x), negative_slope=0.2) x = self.conv2(x) x = F.leaky_relu(self.bn2(x), negative_slope=0.2) x = self.conv3(x) x = F.leaky_relu(self.bn3(x), negative_slope=0.2) x = self.conv4(x) x = F.leaky_relu(self.bn4(x), negative_slope=0.2) x = x.view(-1, 4 * 4 * 512) x = self.fc1(x) x = torch.sigmoid(x) return x 接下来,我们定义一些辅助函数: python def preprocess_audio(audio): spectrogram = librosa.feature.melspectrogram(audio, sr=SAMPLE_RATE, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_MELS) spectrogram = librosa.power_to_db(spectrogram, ref=np.max) spectrogram = np.expand_dims(spectrogram, axis=0) return spectrogram def generate_latent_vectors(n_samples): return torch.randn(n_samples, LATENT_DIM) def generate_samples(generator, n_samples): latent_vectors = generate_latent_vectors(n_samples) with torch.no_grad(): samples = generator(latent_vectors) return samples def save_samples(samples, filename): samples = samples.detach().cpu().numpy() samples = samples.reshape(-1, N_CHANNELS, int(N_FFT / 2) + 1) samples = np.transpose(samples, (0, 2, 1)) samples = np.ascontiguousarray(samples) audio = librosa.feature.inverse.mel_to_audio(samples, sr=SAMPLE_RATE, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=N_MELS) librosa.output.write_wav(filename, audio, sr=SAMPLE_RATE) def plot_samples(samples): samples = samples.detach().cpu().numpy() samples = samples.reshape(-1, N_CHANNELS, int(N_FFT / 2) + 1) for i in range(samples.shape[0]): plt.figure() librosa.display.specshow(samples[i].T, sr=SAMPLE_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='mel') plt.colorbar(format='%+2.0f dB') plt.title('Sample %d' % i) plt.tight_layout() plt.show() 然后,我们定义训练过程: python def train(generator, discriminator): generator_optimizer = torch.optim.Adam(generator.parameters(), lr=LEARNING_RATE, betas=(BETA1, BETA2), eps=EPSILON) discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=LEARNING_RATE, betas=(BETA1, BETA2), eps=EPSILON) criterion = nn.BCELoss() writer = SummaryWriter() fixed_latent_vectors = generate_latent_vectors(16) for epoch in range(N_EPOCHS): generator.train() discriminator.train() for i in tqdm(range(0, len(train_data), BATCH_SIZE)): discriminator_optimizer.zero_grad() real_samples = train_data[i:i + BATCH_SIZE] real_samples = torch.from_numpy(real_samples).float().to(device) real_labels = torch.ones(len(real_samples), 1).to(device) fake_samples = generate_samples(generator, len(real_samples)) fake_labels = torch.zeros(len(fake_samples), 1).to(device) discriminator_loss_real = criterion(discriminator(real_samples), real_labels) discriminator_loss_real.backward() discriminator_loss_fake = criterion(discriminator(fake_samples), fake_labels) discriminator_loss_fake.backward() discriminator_loss = discriminator_loss_real + discriminator_loss_fake discriminator_optimizer.step() generator_optimizer.zero_grad() latent_vectors = generate_latent_vectors(len(real_samples)) generated_samples = generator(latent_vectors) generator_loss = criterion(discriminator(generated_samples), real_labels) generator_loss.backward() generator_optimizer.step() generator.eval() discriminator.eval() samples = generate_samples(generator, 16) save_samples(samples, 'samples/sample_%03d.wav' % epoch) plot_samples(samples) writer.add_scalar('Generator Loss', generator_loss, epoch) writer.add_scalar('Discriminator Loss', discriminator_loss, epoch) writer.add_image('Generated Samples', samples, epoch) writer.add_image('Real Samples', real_samples[:16], epoch) writer.close() 最后,我们可以加载数据并开始训练: python audio_files = ['file1.wav', 'file2.wav', 'file3.wav'] train_data = [] for filename in audio_files: audio, _ = librosa.load(filename, sr=SAMPLE_RATE) spectrogram = preprocess_audio(audio) train_data.append(spectrogram) train_data = np.concatenate(train_data, axis=0) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') generator = Generator().to(device) discriminator = Discriminator().to(device) train(generator, discriminator) 这就是WaveGAN-PyTorch的代码及代码解释。希望这可以帮助到你!
以下是使用梯度下降法进行房价预测的Python代码示例: python import numpy as np import pandas as pd import matplotlib.pyplot as plt # 加载数据集 data = pd.read_csv('house_prices.csv') # 特征缩放 data = (data - data.mean()) / data.std() # 将数据集划分为训练集和测试集 train_data = data.sample(frac=0.8, random_state=200) test_data = data.drop(train_data.index) # 提取训练集和测试集的特征和标签 train_features = train_data.iloc[:, :-1] train_labels = train_data.iloc[:, -1] test_features = test_data.iloc[:, :-1] test_labels = test_data.iloc[:, -1] # 构建模型 def gradient_descent(X, y, theta, alpha, m, num_iterations): X_transpose = X.transpose() for i in range(num_iterations): hypothesis = np.dot(X, theta) loss = hypothesis - y cost = np.sum(loss ** 2) / (2 * m) gradient = np.dot(X_transpose, loss) / m theta -= alpha * gradient if i % 1000 == 0: print("Iteration %d | Cost: %f" % (i, cost)) return theta # 添加一列全为1的特征,用于计算截距 train_features['intercept'] = 1 test_features['intercept'] = 1 # 将特征和标签转换为Numpy数组 X = np.array(train_features) y = np.array(train_labels).reshape(-1, 1) # 初始化参数 theta = np.zeros((X.shape[1], 1)) # 设置超参数 alpha = 0.01 num_iterations = 10000 # 运行梯度下降算法 theta = gradient_descent(X, y, theta, alpha, len(X), num_iterations) # 计算在测试集上的预测误差 X_test = np.array(test_features) y_test = np.array(test_labels).reshape(-1, 1) y_pred = np.dot(X_test, theta) test_cost = np.sum((y_pred - y_test) ** 2) / (2 * len(y_test)) print("Test Cost:", test_cost) # 绘制预测结果与真实值的散点图 plt.scatter(y_test, y_pred) plt.xlabel("True Values") plt.ylabel("Predictions") plt.show() 在上面的代码中,我们首先加载数据集,然后进行特征缩放,将数据集划分为训练集和测试集,并提取训练集和测试集的特征和标签。接着,我们定义了一个梯度下降函数,用于训练模型。在函数中,我们首先计算假设函数的值,然后计算损失和代价,并计算梯度更新参数。运行完梯度下降算法后,我们使用测试集计算预测误差,并绘制预测结果与真实值的散点图。 需要注意的是,上述代码仅作为示例,实际应用中需要根据具体情况进行调整和优化。
以下是使用 PyTorch 实现的 MADDPG 代码示例: import torch import torch.nn as nn import torch.optim as optim import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义 Actor 和 Critic 网络 class Actor(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim): super(Actor, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, action_dim) def forward(self, state): x = torch.relu(self.fc1(state)) x = torch.relu(self.fc2(x)) x = torch.tanh(self.fc3(x)) return x class Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim): super(Critic, self).__init__() self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, 1) def forward(self, state, action): x = torch.cat([state, action], dim=1) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义 MADDPG 算法类 class MADDPG: def __init__(self, n_agents, state_dim, action_dim, hidden_dim, discount_factor=0.99, tau=0.01, critic_lr=0.001, actor_lr=0.001): self.n_agents = n_agents self.state_dim = state_dim self.action_dim = action_dim self.hidden_dim = hidden_dim self.discount_factor = discount_factor self.tau = tau self.critic_local = [Critic(state_dim * n_agents, action_dim * n_agents, hidden_dim).to(device) for i in range(n_agents)] self.critic_target = [Critic(state_dim * n_agents, action_dim * n_agents, hidden_dim).to(device) for i in range(n_agents)] self.actor_local = [Actor(state_dim, action_dim, hidden_dim).to(device) for i in range(n_agents)] self.actor_target = [Actor(state_dim, action_dim, hidden_dim).to(device) for i in range(n_agents)] self.critic_optim = [optim.Adam(self.critic_local[i].parameters(), lr=critic_lr) for i in range(n_agents)] self.actor_optim = [optim.Adam(self.actor_local[i].parameters(), lr=actor_lr) for i in range(n_agents)] self.memory = ReplayBuffer() def act(self, state): actions = [] for i in range(self.n_agents): state_tensor = torch.tensor(state[i], dtype=torch.float32).unsqueeze(0).to(device) action_tensor = self.actor_local[i](state_tensor).detach().cpu().numpy()[0] actions.append(action_tensor) return np.array(actions) def step(self, state, action, reward, next_state, done): self.memory.add(state, action, reward, next_state, done) if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences) def learn(self, experiences): states, actions, rewards, next_states, dones = experiences for i in range(self.n_agents): states_i = states.reshape(-1, self.state_dim)[i::self.n_agents] actions_i = actions.reshape(-1, self.action_dim)[i::self.n_agents] rewards_i = rewards[:, i].reshape(-1, 1) next_states_i = next_states.reshape(-1, self.state_dim)[i::self.n_agents] dones_i = dones[:, i].reshape(-1, 1) # 计算 Q_target actions_next = [] for j in range(self.n_agents): next_states_j = next_states.reshape(-1, self.state_dim)[j::self.n_agents] action_next_j = self.actor_target[j](next_states_j).detach().cpu().numpy() actions_next.append(action_next_j) actions_next = np.stack(actions_next).transpose() q_next = self.critic_target[i](torch.tensor(next_states_i, dtype=torch.float32).to(device), torch.tensor(actions_next, dtype=torch.float32).to(device)) q_target_i = rewards_i + (self.discount_factor * q_next * (1 - dones_i)) # 计算 Critic loss q_local_i = self.critic_local[i](torch.tensor(states_i, dtype=torch.float32).to(device), torch.tensor(actions_i, dtype=torch.float32).to(device)) critic_loss_i = nn.MSELoss()(q_local_i, q_target_i.detach()) # 更新 Critic 网络 self.critic_optim[i].zero_grad() critic_loss_i.backward() self.critic_optim[i].step() # 计算 Actor loss actions_pred = [] for j in range(self.n_agents): states_j = states.reshape(-1, self.state_dim)[j::self.n_agents] actions_pred_j = self.actor_local[j](torch.tensor(states_j, dtype=torch.float32).to(device)) if j == i: actions_pred_i = actions_pred_j else: actions_pred.append(actions_pred_j.detach().cpu().numpy()) actions_pred.append(actions_pred_i.detach().cpu().numpy()) actions_pred = np.stack(actions_pred).transpose() actor_loss_i = -self.critic_local[i](torch.tensor(states_i, dtype=torch.float32).to(device), torch.tensor(actions_pred, dtype=torch.float32).to(device)).mean() # 更新 Actor 网络 self.actor_optim[i].zero_grad() actor_loss_i.backward() self.actor_optim[i].step() # 软更新 Critic 和 Actor 目标网络 self.soft_update(self.critic_local[i], self.critic_target[i], self.tau) self.soft_update(self.actor_local[i], self.actor_target[i], self.tau) def soft_update(self, local_model, target_model, tau): for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) # 定义 ReplayBuffer 类 class ReplayBuffer: def __init__(self, buffer_size=int(1e6)): self.buffer_size = buffer_size self.buffer = [] self.position = 0 def add(self, state, action, reward, next_state, done): if len(self.buffer) < self.buffer_size: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.buffer_size def sample(self, batch_size=128): batch = zip(*random.sample(self.buffer, batch_size)) return [torch.tensor(item, dtype=torch.float32).to(device) for item in batch] def __len__(self): return len(self.buffer) # 定义训练函数 def train(agent, env, n_episodes=5000, max_t=1000): scores = [] for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] states = env_info.vector_observations agent.reset() score = np.zeros(num_agents) for t in range(max_t): actions = agent.act(states) env_info = env.step(actions)[brain_name] next_states = env_info.vector_observations rewards = env_info.rewards dones = env_info.local_done agent.step(states, actions, rewards, next_states, dones) states = next_states score += rewards if np.any(dones): break scores.append(np.max(score)) print('\rEpisode {}\tScore: {:.2f}'.format(i_episode, np.max(score)), end="") if i_episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores[-100:]))) if np.mean(scores[-100:]) >= 0.5: print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores[-100:]))) torch.save(agent.actor_local.state_dict(), 'checkpoint_actor.pth') torch.save(agent.critic_local.state_dict(), 'checkpoint_critic.pth') break # 创建 MADDPG 实例并训练 agent = MADDPG(n_agents=num_agents, state_dim=state_size, action_dim=action_size, hidden_dim=128) train(agent, env) 以上代码示例中,Actor 和 Critic 网络均为全连接神经网络,其中 Actor 网络输出动作值,并使用 tanh 函数对动作进行了缩放。MADDPG 类定义了 MADDPG 算法的实现方法,其中包括了 Actor 和 Critic 的本地网络和目标网络,并定义了学习和软更新方法。ReplayBuffer 类实现了经验回放缓存。训练函数 train 利用以上类来实现 MADDPG 算法的训练。
好的,您需要一个基于 LSTM 网络的语音识别程序,要求在 PyTorch 环境下运行,并且使用 MFCC 频谱,搭建一个 LSTM 模型。以下是一个简单的示例: python import torch import torch.nn as nn import torchaudio class LSTMModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(LSTMModel, self).__init__() self.hidden_dim = hidden_dim self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = torch.zeros(1, x.size(0), self.hidden_dim).to(x.device) c0 = torch.zeros(1, x.size(0), self.hidden_dim).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # Load dataset train_dataset = torchaudio.datasets.LIBRISPEECH(".", url="train-clean-100", download=True) test_dataset = torchaudio.datasets.LIBRISPEECH(".", url="test-clean", download=True) # Define model input_dim = 13 # MFCC特征维度 hidden_dim = 128 output_dim = 40 # 类别数 model = LSTMModel(input_dim, hidden_dim, output_dim) # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Train model num_epochs = 5 for epoch in range(num_epochs): for i, (audio, label) in enumerate(train_dataset): optimizer.zero_grad() mfcc_transform = torchaudio.transforms.MFCC(sample_rate=16000, n_mfcc=input_dim) audio_mfcc = mfcc_transform(audio) audio_mfcc = audio_mfcc.transpose(0, 1).unsqueeze(0) output = model(audio_mfcc) loss = criterion(output, label) loss.backward() optimizer.step() if i % 100 == 0: print(f"Epoch {epoch + 1}, Step {i}, Loss: {loss.item()}") # Evaluate model correct = 0 total = 0 with torch.no_grad(): for audio, label in test_dataset: mfcc_transform = torchaudio.transforms.MFCC(sample_rate=16000, n_mfcc=input_dim) audio_mfcc = mfcc_transform(audio) audio_mfcc = audio_mfcc.transpose(0, 1).unsqueeze(0) output = model(audio_mfcc) _, predicted = torch.max(output.data, 1) total += 1 correct += (predicted == label).sum().item() accuracy = correct / total print(f"Test Accuracy: {accuracy}") 在这里,我们首先加载 LIBRISPEECH 数据集。然后,我们定义了一个 LSTMModel 类,它继承自 nn.Module。我们将 MFCC 特征维度、隐藏维度和输出维度作为参数传递给模型。在 __init__ 函数中,我们定义了一个 LSTM 层和一个全连接层。在 forward 函数中,我们将输入 x 传递给 LSTM 层,并将最后一个时间步的输出传递给全连接层。最后,我们返回输出。 在训练循环中,我们遍历数据集中的每个样本,使用 torchaudio.transforms.MFCC 将音频信号转换为 MFCC 频谱,并将其传递给模型进行训练,并优化模型参数。 在测试中,我们使用相同的方式将音频信号转换为 MFCC 频谱,并将其传递给模型进行预测。最后,我们计算分类准确率。 希望这个示例对您有帮助!
### 回答1: 深度置信网络(Deep Belief Network,DBN)是一种由多个受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)堆叠而成的深度学习模型。下面是一个用Python实现的深度置信网络的简单示例代码: python import numpy as np import tensorflow as tf # 定义一个受限玻尔兹曼机(RBM)类 class RBM(object): def __init__(self, visible_nodes, hidden_nodes): self.visible_nodes = visible_nodes self.hidden_nodes = hidden_nodes self.weights = tf.Variable(tf.random.normal([visible_nodes, hidden_nodes])) self.visible_bias = tf.Variable(tf.zeros([visible_nodes])) self.hidden_bias = tf.Variable(tf.zeros([hidden_nodes])) # 定义识别步骤 def recognize(self, visible): hidden_prob = tf.nn.sigmoid(tf.matmul(visible, self.weights) + self.hidden_bias) hidden_state = tf.nn.relu(tf.sign(hidden_prob - tf.random.uniform(tf.shape(hidden_prob)))) return hidden_state # 定义生成步骤 def generate(self, hidden): visible_prob = tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(self.weights)) + self.visible_bias) visible_state = tf.nn.relu(tf.sign(visible_prob - tf.random.uniform(tf.shape(visible_prob)))) return visible_state # 定义一步回归训练 def train_step(self, visible, k=1): with tf.GradientTape() as tape: positive_hidden = self.recognize(visible) for i in range(k): visible_gibbs = self.generate(positive_hidden) negative_hidden = self.recognize(visible_gibbs) positive_gradient = tf.matmul(tf.transpose(visible), positive_hidden) negative_gradient = tf.matmul(tf.transpose(visible_gibbs), negative_hidden) delta_weights = (positive_gradient - negative_gradient) / tf.cast(tf.shape(visible)[0], tf.float32) delta_visible_bias = tf.reduce_mean(visible - visible_gibbs, 0) delta_hidden_bias = tf.reduce_mean(positive_hidden - negative_hidden, 0) self.weights.assign_add(0.1 * delta_weights) self.visible_bias.assign_add(0.1 * delta_visible_bias) self.hidden_bias.assign_add(0.1 * delta_hidden_bias) return tape.gradient(self.weights, self.weights), tape.gradient(self.visible_bias, self.visible_bias), tape.gradient(self.hidden_bias, self.hidden_bias) # 创建深度置信网络 class DeepBeliefNetwork(object): def __init__(self, rbm_layers): self.rbm_layers = [] for i in range(len(rbm_layers)-1): self.rbm_layers.append(RBM(rbm_layers[i], rbm_layers[i+1])) # 定义训练整个深度置信网络的方法 def train(self, visible, epochs=10, k=1): for rbm in self.rbm_layers: for epoch in range(epochs): weights_grad, visible_bias_grad, hidden_bias_grad = rbm.train_step(visible, k) visible = rbm.recognize(visible) return weights_grad, visible_bias_grad, hidden_bias_grad # 测试代码 visible_nodes = 784 # 输入层节点数 hidden_nodes = [500, 250, 100] # 隐藏层节点数(每层) rbm_layers = [visible_nodes] + hidden_nodes # 创建深度置信网络 dbn = DeepBeliefNetwork(rbm_layers) # 加载数据等预处理步骤 # ... # 训练深度置信网络 weights_grad, visible_bias_grad, hidden_bias_grad = dbn.train(visible_data, epochs=10, k=1) 以上代码将创建一个包含3个受限玻尔兹曼机层的深度置信网络,并提供了recognize(识别)和generate(生成)方法来执行训练和预测。train方法可以用来训练整个深度置信网络。其中的训练步骤使用了梯度下降算法来更新网络中的权重、可见层偏置项和隐藏层偏置项。请注意,这只是深度置信网络的一个简单示例,实际应用中可能需要进行更多的优化和调整。 ### 回答2: 深度置信网络(Deep Belief Network, DBN)是一种无监督学习算法,由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)组成,用于学习输入数据的分布和特征表示。下面是使用Python实现深度置信网络的示例代码: python import numpy as np import tensorflow as tf class DeepBeliefNetwork: def __init__(self, n_visible, n_hidden, n_layers): self.layers = [] for i in range(n_layers): if i == 0: input_size = n_visible else: input_size = n_hidden[i-1] rbm = RBM(input_size, n_hidden[i]) self.layers.append(rbm) def train(self, X, lr=0.1, epochs=10): for layer in self.layers: layer.train(X, lr, epochs) X = layer.transform(X) def transform(self, X): for layer in self.layers: X = layer.transform(X) return X class RBM: def __init__(self, n_visible, n_hidden): self.n_visible = n_visible self.n_hidden = n_hidden self.weights = tf.Variable(tf.random.normal([n_visible, n_hidden], mean=0.0, stddev=0.01)) self.visible_bias = tf.Variable(tf.zeros([n_visible])) self.hidden_bias = tf.Variable(tf.zeros([n_hidden])) def sample_hidden(self, visible): hidden_prob = tf.nn.sigmoid(tf.matmul(visible, self.weights) + self.hidden_bias) hidden = self._binary_sample(hidden_prob) return hidden def sample_visible(self, hidden): visible_prob = tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(self.weights)) + self.visible_bias) visible = self._binary_sample(visible_prob) return visible def _binary_sample(self, prob): return tf.nn.relu(tf.sign(prob - tf.random.uniform(tf.shape(prob)))) def train(self, X, lr, epochs): for epoch in range(epochs): for i in range(X.shape[0]): visible = X[i:i+1] hidden = self.sample_hidden(visible) reconstructed_visible = self.sample_visible(hidden) reconstructed_hidden = self.sample_hidden(reconstructed_visible) positive_grad = tf.matmul(tf.transpose(visible), hidden) negative_grad = tf.matmul(tf.transpose(reconstructed_visible), reconstructed_hidden) self.weights.assign_add(lr * (positive_grad - negative_grad)) self.visible_bias.assign_add(lr * tf.reduce_mean(visible - reconstructed_visible, 0)) self.hidden_bias.assign_add(lr * tf.reduce_mean(hidden - reconstructed_hidden, 0)) 以上是一个简单的深度置信网络的Python实现。这段代码使用TensorFlow库实现了深度置信网络的训练和转换功能。在初始化DBN时,可以指定输入层、输出层的维度和隐藏层数。通过训练函数train()可以对网络进行训练,训练数据通过参数X传入。训练完成后,可以使用transform()函数对数据进行转换,得到特征表示。内部实现使用了RBM类来构建每一层的受限玻尔兹曼机,通过无监督的逐层训练来实现深度学习的目的。
要实现 CTC(Connectionist Temporal Classification)声学语音识别模型,可以使用 PyTorch 框架和 Librosa 库进行开发。以下是一个基本的 CTC 模型的实现代码示例: python import torch import torch.nn as nn import torch.nn.functional as F import librosa class CTCModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(CTCModel, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.lstm1 = nn.LSTM(input_dim, hidden_dim, bidirectional=True, batch_first=True) self.lstm2 = nn.LSTM(hidden_dim*2, hidden_dim, bidirectional=True, batch_first=True) self.fc = nn.Linear(hidden_dim*2, output_dim) def forward(self, x): # x shape: (batch, seq_len, input_dim) x, _ = self.lstm1(x) x, _ = self.lstm2(x) x = self.fc(x) x = F.log_softmax(x, dim=-1) return x # 定义训练函数 def train(model, optimizer, criterion, train_loader, device): model.train() total_loss = 0 for i, (inputs, targets, input_lengths, target_lengths) in enumerate(train_loader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) outputs = outputs.transpose(0, 1) # (seq_len, batch, output_dim) input_lengths = input_lengths.cpu().numpy() target_lengths = target_lengths.cpu().numpy() loss = criterion(outputs, targets, input_lengths, target_lengths) loss.backward() optimizer.step() total_loss += loss.item() return total_loss / len(train_loader) # 定义测试函数 def test(model, criterion, test_loader, device): model.eval() total_loss = 0 with torch.no_grad(): for i, (inputs, targets, input_lengths, target_lengths) in enumerate(test_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) outputs = outputs.transpose(0, 1) # (seq_len, batch, output_dim) input_lengths = input_lengths.cpu().numpy() target_lengths = target_lengths.cpu().numpy() loss = criterion(outputs, targets, input_lengths, target_lengths) total_loss += loss.item() return total_loss / len(test_loader) # 定义 CTC 损失函数 class CTCLoss(nn.Module): def __init__(self): super(CTCLoss, self).__init__() self.ctc_loss = nn.CTCLoss() def forward(self, outputs, targets, input_lengths, target_lengths): batch_size = outputs.size(1) log_probs = outputs.permute(1, 0, 2) log_probs_lens = torch.full((batch_size,), log_probs.size(0), dtype=torch.int32) targets_lens = target_lengths targets = targets.T loss = self.ctc_loss(log_probs, targets, log_probs_lens, targets_lens) return loss # 加载数据集 def load_dataset(audio_files, transcripts, sample_rate, window_size, window_stride, window, batch_size): audio_transforms = nn.Sequential( lambda x: librosa.util.normalize(x), lambda x: librosa.feature.mfcc(x, sr=sample_rate, n_mfcc=40, n_fft=int(sample_rate*window_size), hop_length=int(sample_rate*window_stride)), lambda x: (x - x.mean(axis=1, keepdims=True)) / x.std(axis=1, keepdims=True) ) text_transforms = nn.Sequential( lambda x: [char2idx[c] for c in x], torch.LongTensor ) dataset = SpeechDataset(audio_files, transcripts, audio_transforms, text_transforms) loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn) return loader # 定义数据集类和数据处理函数 class SpeechDataset(torch.utils.data.Dataset): def __init__(self, audio_files, transcripts, audio_transforms=None, text_transforms=None): self.audio_files = audio_files self.transcripts = transcripts self.audio_transforms = audio_transforms self.text_transforms = text_transforms def __getitem__(self, index): audio_file = self.audio_files[index] transcript = self.transcripts[index] audio, sample_rate = librosa.load(audio_file, sr=None) audio = torch.from_numpy(audio).float() if self.audio_transforms is not None: audio = self.audio_transforms(audio) if self.text_transforms is not None: transcript = self.text_transforms(transcript) input_length = audio.size(1) target_length = len(transcript) return audio, transcript, input_length, target_length def __len__(self): return len(self.audio_files) def collate_fn(batch): audios = [item[0] for item in batch] transcripts = [item[1] for item in batch] input_lengths = torch.LongTensor([item[2] for item in batch]) target_lengths = torch.LongTensor([item[3] for item in batch]) max_input_length = max(input_lengths) max_target_length = max(target_lengths) padded_audios = torch.zeros(len(audios), max_input_length, audios[0].size(0)) padded_transcripts = torch.zeros(len(transcripts), max_target_length, dtype=torch.long) for i, audio in enumerate(audios): padded_audios[i, :audio.size(1), :] = audio for i, transcript in enumerate(transcripts): padded_transcripts[i, :len(transcript)] = transcript return padded_audios, padded_transcripts, input_lengths, target_lengths 在上述代码中,CTCModel 是一个基本的 CTC 模型,包含两个 LSTM 层和一个全连接层。train 函数和 test 函数分别用于训练和测试模型。CTCLoss 是一个 CTC 损失函数类。load_dataset 函数用于加载训练和测试数据集,其中 SpeechDataset 类和 collate_fn 函数用于处理数据。 在使用时,可以先定义训练集和测试集的音频文件路径和文本数据,然后调用 load_dataset 函数加载数据集。接着定义模型、训练参数、优化器和损失函数,并开始训练模型。
以下是一个使用Transformer进行语音识别的Python代码示例: python import torch import torch.nn as nn import torch.optim as optim import torchaudio from torch.utils.data import DataLoader from torch.utils.data import Dataset # Define the dataset for loading the audio data class AudioDataset(Dataset): def __init__(self, file_paths): self.file_paths = file_paths def __len__(self): return len(self.file_paths) def __getitem__(self, idx): waveform, sample_rate = torchaudio.load(self.file_paths[idx]) return waveform, sample_rate # Define the Transformer model class TransformerModel(nn.Module): def __init__(self, input_dim, output_dim, d_model, nhead, num_layers, dim_feedforward, dropout): super(TransformerModel, self).__init__() self.input_proj = nn.Linear(input_dim, d_model) encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.output_proj = nn.Linear(d_model, output_dim) def forward(self, src): src = self.input_proj(src) src = src.permute(1, 0, 2) output = self.transformer_encoder(src) output = output.permute(1, 0, 2) output = self.output_proj(output) return output # Set the hyperparameters input_dim = 1 output_dim = 29 # Number of phonemes in English language d_model = 512 nhead = 8 num_layers = 6 dim_feedforward = 2048 dropout = 0.1 lr = 0.0001 batch_size = 32 epochs = 10 # Load the audio dataset and create the dataloader file_paths = ["audio1.wav", "audio2.wav", ...] audio_dataset = AudioDataset(file_paths) audio_dataloader = DataLoader(audio_dataset, batch_size=batch_size, shuffle=True) # Initialize the Transformer model and the optimizer model = TransformerModel(input_dim, output_dim, d_model, nhead, num_layers, dim_feedforward, dropout) optimizer = optim.Adam(model.parameters(), lr=lr) # Define the loss function criterion = nn.CrossEntropyLoss() # Train the Transformer model for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(audio_dataloader, 0): inputs, labels = data inputs = inputs.squeeze().transpose(0, 1) # Shape: (seq_len, batch_size, input_dim) labels = labels.squeeze() - 1 # Subtract 1 to convert phoneme index from 1-based to 0-based optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs.view(-1, output_dim), labels.view(-1)) loss.backward() optimizer.step() running_loss += loss.item() print("Epoch %d loss: %.3f" % (epoch+1, running_loss / len(audio_dataloader))) 请注意,此示例是基于一个简单的英语语音识别任务,使用TIMIT数据集。在实际使用时,你需要根据你的数据集和任务进行适当的修改。
好的,我会尽力解释清楚每个步骤。 首先,需要导入numpy库: python import numpy as np 接下来,我们需要定义支持向量机的类: python class SVM: def __init__(self, learning_rate=0.001, lambda_param=0.01, n_iters=1000): self.lr = learning_rate self.lambda_param = lambda_param self.n_iters = n_iters self.w = None self.b = None 这里我们设定了学习率、正则化系数和迭代次数,以及定义了模型的参数 w 和 b。 接下来,我们需要实现支持向量机模型的训练过程。在这个例子中,我们将使用随机梯度下降算法进行优化。具体实现如下: python def fit(self, X, y): n_samples, n_features = X.shape # 初始化 w 和 b self.w = np.zeros(n_features) self.b = 0 # 随机梯度下降算法 for _ in range(self.n_iters): random_index = np.random.randint(n_samples) sample = X[random_index] y_true = y[random_index] if y_true * (np.dot(sample, self.w) - self.b) >= 1: dw = 2 * self.lambda_param * self.w db = 0 else: dw = 2 * self.lambda_param * self.w - np.dot(sample, y_true) db = -y_true self.w -= self.lr * dw self.b -= self.lr * db 在这段代码中,我们首先初始化了参数 w 和 b,然后使用随机梯度下降算法进行优化。对于每一次迭代,我们随机选择一条样本,并计算其对应的梯度。如果这个样本被正确分类,则只需要对 w 进行正则化;否则,我们还需要加上样本本身的贡献。 接下来,我们需要实现模型的预测过程。具体实现如下: python def predict(self, X): linear_output = np.dot(X, self.w) - self.b return np.sign(linear_output) 在这段代码中,我们首先计算出每个样本的线性输出,然后根据其符号来进行分类。 接下来,我们需要实现模型的保存和加载过程。具体实现如下: python def save_model(self, model_path): np.save(model_path, [self.w, self.b]) def load_model(self, model_path): self.w, self.b = np.load(model_path, allow_pickle=True) 在这段代码中,我们使用 numpy 库提供的 save 和 load 函数,将模型的参数 w 和 b 保存到二进制文件中。 最后,我们需要编写一个测试代码,以验证我们的模型是否正确。具体实现如下: python # 定义训练数据和标签 X_train = np.random.rand(100, 18) y_train = np.random.choice([-1, 1], 100) # 定义模型并训练 svm = SVM() svm.fit(X_train, y_train) # 保存模型 svm.save_model('svm_model.npy') # 加载模型 loaded_svm = SVM() loaded_svm.load_model('svm_model.npy') # 预测单条数据 data = np.random.rand(18) prediction = loaded_svm.predict(data) print(prediction) 在这段代码中,我们首先定义了训练数据和标签,然后使用随机数据对模型进行训练,并将模型保存到文件中。接着,我们又加载了这个文件,创建了一个新的模型,并使用一个随机样本进行预测。最后,我们打印出了这个样本的预测结果。 这样,我们就成功地实现了一个使用 numpy 库实现的线性不可分支持向量机。
贝叶斯神经网络(BNN)是一种神经网络,它使用贝叶斯统计方法来处理权重和偏差。相比于传统的神经网络,BNN可以提供更加准确的不确定性估计,因此在一些需要考虑不确定性的任务中具有优势。下面是使用BNN的一般步骤: 1.定义模型结构:与传统神经网络一样,需要定义BNN的层数、每层的神经元数量、激活函数等。 2.定义先验分布:BNN使用先验分布来描述权重和偏差的不确定性。通常使用正态分布作为先验分布。 3.定义似然函数:似然函数描述了观测数据与模型预测之间的关系。对于分类问题,通常使用softmax函数作为似然函数。 4.定义后验分布:根据贝叶斯定理,后验分布是先验分布和似然函数的乘积。可以使用马尔可夫链蒙特卡罗(MCMC)方法或变分推断方法来估计后验分布。 5.训练模型:使用训练数据来更新后验分布,通常使用随机梯度下降(SGD)算法。 6.预测:使用测试数据来进行预测,通常使用后验分布的均值或模型的采样来进行预测。 下面是一个使用Pyro库实现BNN的例子: python import torch import pyro import pyro.distributions as dist # 定义模型结构 def model(x_data, y_data): # 定义先验分布 w = pyro.sample("w", dist.Normal(torch.zeros(1, 2), torch.ones(1, 2))) b = pyro.sample("b", dist.Normal(torch.zeros(1), torch.ones(1))) # 定义似然函数 with pyro.plate("data", len(x_data)): x = x_data y = y_data f = torch.mm(x, w.transpose(0, 1)) + b pyro.sample("obs", dist.Bernoulli(logits=f), obs=y) # 训练模型 def train(x_data, y_data): pyro.clear_param_store() optimizer = pyro.optim.Adam({"lr": 0.01}) loss_fn = pyro.infer.Trace_ELBO() num_steps = 1000 for i in range(num_steps): loss = loss_fn(model, x_data, y_data) loss.backward() optimizer.step() optimizer.zero_grad() if (i + 1) % 100 == 0: print("step {}: loss = {}".format(i + 1, loss.item())) # 预测 def predict(x_data): w = pyro.param("w_loc") b = pyro.param("b_loc") f = torch.mm(x_data, w.transpose(0, 1)) + b return torch.sigmoid(f) # 使用示例 x_data = torch.tensor([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) y_data = torch.tensor([0.0, 1.0, 1.0, 0.0]) train(x_data, y_data) print(predict(x_data))
首先,我们需要加载VOC2012数据集并筛选出dog类的图片。可以使用torchvision中的datasets模块来加载数据集,然后使用transforms模块进行数据增强。 python import torch import torchvision.transforms as transforms import torchvision.datasets as datasets # 数据增强 transform = transforms.Compose([ transforms.RandomResizedCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor() ]) # 加载VOC2012数据集 train_dataset = datasets.VOCDetection(root='./data', year='2012', image_set='train', download=True, transform=transform) # 筛选dog类的图片 dog_dataset = [] for img, target in train_dataset: for obj in target['annotation']['object']: if obj['name'] == 'dog': dog_dataset.append(img) break 接下来,我们需要对dog类的图片进行随机采样,并在每个采样的图片块中挖掘具有判别性和频繁性的一类图片。这里我们使用LeNet作为挖掘算法。LeNet是一个经典的卷积神经网络,适用于处理小尺寸图像。 python import torch.nn as nn import torch.nn.functional as F # 定义LeNet模型 class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 随机采样dog类的图片块 sampled_images = [] for dog_img in dog_dataset: h, w = dog_img.size[-2], dog_img.size[-1] x = torch.randint(0, w - 32, (10,)) y = torch.randint(0, h - 32, (10,)) for i in range(10): sampled_images.append(dog_img[:, :, y[i]:y[i]+32, x[i]:x[i]+32]) # 挖掘具有判别性和频繁性的一类图片 model = LeNet() model.train() optim = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) for epoch in range(10): for img in sampled_images: optim.zero_grad() output = model(img) loss = F.cross_entropy(output, torch.tensor([0])) loss.backward() optim.step() # 可视化挖掘结果 import matplotlib.pyplot as plt import numpy as np fig, axs = plt.subplots(2, 5) for i in range(2): for j in range(5): img = model.conv1.weight[i*5+j].detach().numpy() img = np.transpose(img, (1, 2, 0)) img = (img - np.min(img)) / (np.max(img) - np.min(img)) axs[i][j].imshow(img) plt.show() 最后,我们可以将挖掘出的图片可视化。这里我们选择可视化LeNet模型的第一层卷积层的权重,因为这一层通常可以提取出输入图像的基本特征。 代码中,我们使用matplotlib库将挖掘出的10张图片可视化。每张图片对应LeNet模型第一层的一个卷积核权重。可以看到,这些卷积核权重对应的是具有判别性和频繁性的一类图片的基本特征。

最新推荐

基于Springboot的网上宠物店系统的设计与实现论文-java-文档-基于Springboot网上宠物店系统的设计与实现文档

基于Springboot的网上宠物店系统的设计与实现论文-java-文档-基于Springboot网上宠物店系统的设计与实现文档论文: !!!本文档只是论文参考文档! 需要项目源码、数据库sql、开发文档、毕设咨询等,请私信联系~ ① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SpringBoot ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、Springboot、Mybatis、Ajax、Vue等 最新计算机软件毕业设计选题大全 https://blog.csdn.net/weixin_45630258/article/details/135901374 摘 要 目 录 第1章

【元胞自动机】基于matlab元胞自动机交通流仿真【含Matlab源码 827期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

基于SpringBoot的宽带业务管理系统的设计与实现论文-java-文档-基于SpringBoot的宽带业务管理系统文档

基于SpringBoot的宽带业务管理系统的设计与实现论文-java-文档-基于SpringBoot的宽带业务管理系统文档论文: !!!本文档只是论文参考文档! 需要项目源码、数据库sql、开发文档、毕设咨询等,请私信联系~ ① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SpringBoot ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、Springboot、Mybatis、Ajax、Vue等 最新计算机软件毕业设计选题大全 https://blog.csdn.net/weixin_45630258/article/details/135901374 摘 要 目 录 第1章 绪论

Job Plus项目是基于SpringBoot+Vue的轻量级定时任务管理系统.zip

Job Plus项目是基于SpringBoot+Vue的轻量级定时任务管理系统

车门密封条TPV裁断收料生产线(sw18可编辑+工程图+bom)_零件图_机械工程图_机械三维3D设计图打包下载.zip

车门密封条TPV裁断收料生产线(sw18可编辑+工程图+bom)_零件图_机械工程图_机械三维3D设计图打包下载.zip

面向6G的编码调制和波形技术.docx

面向6G的编码调制和波形技术.docx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Power BI中的数据导入技巧

# 1. Power BI简介 ## 1.1 Power BI概述 Power BI是由微软公司推出的一款业界领先的商业智能工具,通过强大的数据分析和可视化功能,帮助用户快速理解数据,并从中获取商业见解。它包括 Power BI Desktop、Power BI Service 以及 Power BI Mobile 等应用程序。 ## 1.2 Power BI的优势 - 基于云端的数据存储和分享 - 丰富的数据连接选项和转换功能 - 强大的数据可视化能力 - 内置的人工智能分析功能 - 完善的安全性和合规性 ## 1.3 Power BI在数据处理中的应用 Power BI在数据处

建立关于x1,x2 和x1x2 的 Logistic 回归方程.

假设我们有一个包含两个特征(x1和x2)和一个二元目标变量(y)的数据集。我们可以使用逻辑回归模型来建立x1、x2和x1x2对y的影响关系。 逻辑回归模型的一般形式是: p(y=1|x1,x2) = σ(β0 + β1x1 + β2x2 + β3x1x2) 其中,σ是sigmoid函数,β0、β1、β2和β3是需要估计的系数。 这个方程表达的是当x1、x2和x1x2的值给定时,y等于1的概率。我们可以通过最大化似然函数来估计模型参数,或者使用梯度下降等优化算法来最小化成本函数来实现此目的。

智能网联汽车技术期末考试卷B.docx

。。。