已知一帧点云的检测结果(x, y, z, w, h, l, yaw),calib知道文件所在路径。要得到同一帧2D图像的检测框(x1,y1,x2,y2)和alpha朝向角,要求用Python写出一个函数,写出代码并给出实例。
时间: 2024-04-08 12:35:17 浏览: 246
当给定一帧点云的检测结果(x, y, z, w, h, l, yaw)和 calib 文件的路径时,可以利用以下代码来获取同一帧2D图像的检测框(x1, y1, x2, y2)和 alpha 朝向角:
```python
import numpy as np
import os
def get_2d_detection_box_and_alpha(calib_path, detection_result):
# Load calibration matrix from calib file
with open(calib_path, 'r') as f:
lines = f.readlines()
P2 = np.array([float(num) for num in lines[2].strip().split(' ')[1:13]]).reshape(3, 4)
# Extract necessary parameters from detection result
x, y, z, w, h, l, yaw = detection_result
# Convert 3D bounding box to 3D corners
corners_3d = np.array([
[-l / 2, -w / 2, -h / 2],
[l / 2, -w / 2, -h / 2],
[l / 2, w / 2, -h / 2],
[-l / 2, w / 2, -h / 2],
[-l / 2, -w / 2, h / 2],
[l / 2, -w / 2, h / 2],
[l / 2, w / 2, h / 2],
[-l / 2, w / 2, h / 2]
])
# Convert 3D corners to camera coordinates
R = np.array([
[np.cos(yaw), 0, np.sin(yaw)],
[0, 1, 0],
[-np.sin(yaw), 0, np.cos(yaw)]
])
corners_3d_cam = np.dot(R, corners_3d.T).T + np.array([x, y, z])
# Project 3D corners to 2D image plane
corners_2d = np.dot(P2, np.hstack((corners_3d_cam, np.ones((8, 1)))).T)
corners_2d = corners_2d[:2] / corners_2d[2]
# Get 2D bounding box coordinates and alpha
x1 = np.min(corners_2d[0])
y1 = np.min(corners_2d[1])
x2 = np.max(corners_2d[0])
y2 = np.max(corners_2d[1])
alpha = -np.arctan2(corners_3d_cam[0][2], corners_3d_cam[0][0]) + yaw
return x1, y1, x2, y2, alpha
# Example usage
calib_path = 'path/to/calib.txt'
detection_result = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.785] # [x, y, z, w, h, l, yaw]
x1, y1, x2, y2, alpha = get_2d_detection_box_and_alpha(calib_path, detection_result)
print("2D Detection Box: ({}, {}, {}, {})".format(x1, y1, x2, y2))
print("Alpha: {}".format(alpha))
```
请注意,上述代码假设 calib.txt 文件的格式与 KITTI 数据集的标定文件格式相同。你需要根据实际情况进行适当的调整。此外,该代码使用的是点云数据的标定矩阵 P2,而不是图像的投影矩阵 P。
阅读全文