stm32f407延时函数delay功能实现

时间: 2024-08-13 18:05:58 浏览: 74
STM32F407系列微控制器中的延时函数通常不是直接内置的,而是通过软件计数器或者硬件定时器来间接实现。对于STM32F407,你可以使用预定义的定时器如TIMx(例如TIM1或TIM2)来实现延时。 一种常见的方法是使用SysTick定时器,这是一个免费的、可编程的定时器,常用于实现低级别的延时。以下是一个使用SysTick实现简单延时的例子: ```c // 假设我们有一个全局变量uint32_t g_SysTickCount; void delay(uint32_t ms) { uint32_t startTick = HAL_GetTick(); // 获取当前SysTick计数值 // 计算目标Tick值 uint32_t targetTick = startTick + ms * SysTick_Config(SysTick_DELAY_FREQ / 1000); // SysTick_DELAY_FREQ是SysTick频率 // 循环等待,直到达到目标Tick值 while (HAL_GetTick() < targetTick) { // 不做任何操作,空循环 } }
相关问题

stm32标准库延时函数delay

STM32标准库中的延时函数通常用于在程序中插入一段指定的时间间隔,以便让系统有时间执行其他任务。`delay`函数的具体实现可能会因使用的STM32版本和编译器的不同而有所差异,但通常的标准库会提供一个基础的延时函数,如`HAL_Delay()`或`延时(n)us`。 `HAL_Delay()`是 HAL(硬件抽象层)提供的函数,它使用了系统的时钟周期来计算延迟时间,这对于精度要求较高的应用来说更为合适。它的基本用法如下: ```c void HAL_Delay(uint32_t DelayValue); ``` 其中,`DelayValue`是一个无符号整数,表示需要的延迟时间,单位通常是微秒(us)。 如果你想要一个更底层的延时,可能会使用定时器中断来实现,例如计数器递增直到达到预定值。例如,使用`TIM_Delay()`函数可能涉及设置定时器,并在计满后自动重置计数器: ```c void TIM_Delay(uint32_t delay_ms); ``` 这里,`delay_ms`是以毫秒为单位的延迟时间。

stm32f407 delay函数

在STM32F407上,你可以使用以下代码来实现一个简单的延时函数: ```c #include "stm32f4xx.h" void delay_ms(uint32_t ms) { uint32_t ticks = ms * (SystemCoreClock / 1000); volatile uint32_t current_ticks = SysTick->VAL; while ((SysTick->VAL - current_ticks) < ticks); } void delay_us(uint32_t us) { uint32_t ticks = us * (SystemCoreClock / 1000000); volatile uint32_t current_ticks = SysTick->VAL; while ((SysTick->VAL - current_ticks) < ticks); } int main(void) { // 初始化SysTick定时器 SysTick_Config(SystemCoreClock / 1000); // 配置为1ms中断一次 // 延时1秒 delay_ms(1000); // 延时500毫秒 delay_ms(500); // 延时100微秒 delay_us(100); while (1) { // 主循环 } } ``` 在上述代码中,我们使用了STM32的SysTick定时器来实现延时功能。`delay_ms()`函数可以延时指定的毫秒数,而`delay_us()`函数可以延时指定的微秒数。需要注意的是,这些延时函数是阻塞式的,也就是说在延时期间,CPU将无法执行其他任务。 为了使用SysTick定时器,我们需要在`main()`函数之前调用`SysTick_Config()`函数进行初始化。在上述代码中,我们将SysTick定时器配置为每1毫秒触发一次中断。 请注意,以上代码仅提供了一个简单的延时函数示例,实际应用中可能需要根据系统时钟频率进行调整。

相关推荐

最新推荐

recommend-type

CUBEMX-STM32F030学习笔记

延时函数是微控制器编程中常用的功能,HAL_Delay()函数是通过Syrtick定时器中断实现累加定时的。每1ms调用中断累加一次,读取启动经过的毫秒数可以使用HAL_GetTick()函数。 四、命名规则 STM32F030F4P6的命名规则...
recommend-type

关于for循环写延时函数

在编程领域,延时函数是实现程序控制流程中不可或缺的一部分,尤其在嵌入式系统或者实时操作系统中。延时函数通常用于让程序在特定时间间隔内暂停执行,以实现定时任务、等待某个事件发生或者避免过于频繁的操作。...
recommend-type

最优条件下三次B样条小波边缘检测算子研究

"这篇文档是关于B样条小波在边缘检测中的应用,特别是基于最优条件的三次B样条小波多尺度边缘检测算子的介绍。文档涉及到图像处理、计算机视觉、小波分析和优化理论等多个IT领域的知识点。" 在图像处理中,边缘检测是一项至关重要的任务,因为它能提取出图像的主要特征。Canny算子是一种经典且广泛使用的边缘检测算法,但它并未考虑最优滤波器的概念。本文档提出了一个新的方法,即基于三次B样条小波的边缘提取算子,该算子通过构建目标函数来寻找最优滤波器系数,从而实现更精确的边缘检测。 小波分析是一种强大的数学工具,它能够同时在时域和频域中分析信号,被誉为数学中的"显微镜"。B样条小波是小波家族中的一种,尤其适合于图像处理和信号分析,因为它们具有良好的局部化性质和连续性。三次B样条小波在边缘检测中表现出色,其一阶导数可以用来检测小波变换的局部极大值,这些极大值往往对应于图像的边缘。 文档中提到了Canny算子的三个最优边缘检测准则,包括低虚假响应率、高边缘检测概率以及单像素宽的边缘。作者在此基础上构建了一个目标函数,该函数考虑了这些准则,以找到一组最优的滤波器系数。这些系数与三次B样条函数构成的线性组合形成最优边缘检测算子,能够在不同尺度上有效地检测图像边缘。 实验结果表明,基于最优条件的三次B样条小波边缘检测算子在性能上优于传统的Canny算子,这意味着它可能提供更准确、更稳定的边缘检测结果,这对于计算机视觉、图像分析以及其他依赖边缘信息的领域有着显著的优势。 此外,文档还提到了小波变换的定义,包括尺度函数和小波函数的概念,以及它们如何通过伸缩和平移操作来适应不同的分析需求。稳定性条件和重构小波的概念也得到了讨论,这些都是理解小波分析基础的重要组成部分。 这篇文档深入探讨了如何利用优化理论和三次B样条小波改进边缘检测技术,对于从事图像处理、信号分析和相关研究的IT专业人士来说,是一份极具价值的学习资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

递归阶乘速成:从基础到高级的9个优化策略

![递归阶乘速成:从基础到高级的9个优化策略](https://media.geeksforgeeks.org/wp-content/uploads/20240319104901/dynamic-programming.webp) # 1. 递归阶乘算法的基本概念 在计算机科学中,递归是一种常见的编程技巧,用于解决可以分解为相似子问题的问题。阶乘函数是递归应用中的一个典型示例,它计算一个非负整数的阶乘,即该数以下所有正整数的乘积。阶乘通常用符号"!"表示,例如5的阶乘写作5! = 5 * 4 * 3 * 2 * 1。通过递归,我们可以将较大数的阶乘计算简化为更小数的阶乘计算,直到达到基本情况
recommend-type

pcl库在CMakeLists。txt配置

PCL (Point Cloud Library) 是一个用于处理点云数据的开源计算机视觉库,常用于机器人、三维重建等应用。在 CMakeLists.txt 文件中配置 PCL 需要以下步骤: 1. **添加找到包依赖**: 在 CMakeLists.txt 的顶部,你需要找到并包含 PCL 的 CMake 找包模块。例如: ```cmake find_package(PCL REQUIRED) ``` 2. **指定链接目标**: 如果你打算在你的项目中使用 PCL,你需要告诉 CMake 你需要哪些特定组件。例如,如果你需要 PointCloud 和 vi
recommend-type

深入解析:wav文件格式结构

"该文主要深入解析了wav文件格式,详细介绍了其基于RIFF标准的结构以及包含的Chunk组成。" 在多媒体领域,WAV文件格式是一种广泛使用的未压缩音频文件格式,它的基础是Resource Interchange File Format (RIFF) 标准。RIFF是一种块(Chunk)结构的数据存储格式,通过将数据分为不同的部分来组织文件内容。每个WAV文件由几个关键的Chunk组成,这些Chunk共同定义了音频数据的特性。 1. RIFFWAVE Chunk RIFFWAVE Chunk是文件的起始部分,其前四个字节标识为"RIFF",紧接着的四个字节表示整个Chunk(不包括"RIFF"和Size字段)的大小。接着是'RiffType',在这个情况下是"WAVE",表明这是一个WAV文件。这个Chunk的作用是确认文件的整体类型。 2. Format Chunk Format Chunk标识为"fmt",是WAV文件中至关重要的部分,因为它包含了音频数据的格式信息。例如,采样率、位深度、通道数等都在这个Chunk中定义。这些参数决定了音频的质量和大小。Format Chunk通常包括以下子字段: - Audio Format:2字节,表示音频编码格式,如PCM(无损)或压缩格式。 - Num Channels:2字节,表示音频的声道数,如单声道(1)或立体声(2)。 - Sample Rate:4字节,表示每秒的样本数,如44100 Hz。 - Byte Rate:4字节,每秒音频数据的字节数,等于Sample Rate乘以Bits Per Sample和Num Channels。 - Block Align:2字节,每个样本数据的字节数,等于Bits Per Sample除以8乘以Num Channels。 - Bits Per Sample:2字节,每个样本的位深度,影响声音质量和文件大小。 3. Fact Chunk(可选) Fact Chunk标识为'fact',虽然不是所有WAV文件都包含此Chunk,但它提供了额外的样本信息,如实际的样本数,对于非整数倍采样率的文件尤其有用。 4. Data Chunk Data Chunk标识为'data',是WAV文件中真正包含音频样本数据的部分。其ID后面是4字节的Size字段,表示数据区域的大小,不包括ID和Size本身。这个Chunk的内容就是连续的音频样本值,根据Format Chunk定义的格式进行编码。 所有Chunk的大小字段都是以低字节在前,高字节在后的顺序存储,这是遵循了RIFF格式的规定。理解这些Chunk的结构和内容对于处理和分析WAV文件至关重要,无论是编程处理音频数据还是进行音频文件的转换和编辑。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【递归算法揭秘】:阶乘问题的7个高效实现技巧

![【递归算法揭秘】:阶乘问题的7个高效实现技巧](https://media.geeksforgeeks.org/wp-content/uploads/20230927121458/What-is-Factorial.png) # 1. 递归算法的基本原理 递归算法是一种通过函数自身调用自身以解决问题的编程技巧。它允许问题被拆分成更小的子问题,每个子问题都与原问题具有相同的结构。这种算法通常用于解决可以自然分解为相似子问题的问题,如树或图的遍历。 在递归中,关键的概念是基本情况(base case)和递归步骤(recursive step)。基本情况定义了递归的终止条件,确保算法不会无限
recommend-type

python中如何提取多维训练集中输入特征的部分

在Python中,特别是使用PyTorch进行深度学习时,处理多维特征的输入通常涉及以下几个步骤: 1. **加载数据**[^2]: 使用`numpy.loadtxt`或`pandas.read_csv`等函数加载CSV或TXT文件,这些函数允许指定`delimiter`(分隔符),如逗号或制表符,来解析具有多个特征的列。例如: ```python import numpy as np data = np.loadtxt('data.csv', delimiter=',', usecols=[0, 1, 2]) # 假设前三列为特征 ``` 2. **预处理