np.array(image, dtype=np.int16)
时间: 2023-11-14 18:05:16 浏览: 153
This line of code converts the input image into a NumPy array of data type np.int16.
The np.array() function creates a new NumPy array from the input image. The dtype parameter specifies the data type of the array. In this case, it is set to np.int16, which is a 16-bit integer data type. This data type is commonly used in image processing applications because it allows for a wide range of values to be stored, including negative values.
By converting the image to a NumPy array with this data type, it becomes possible to perform mathematical operations on the image data, such as filtering, thresholding, and edge detection.
相关问题
def __getitem__(self, index): if self.split=='train': vis_path = self.filepath_vis[index] ir_path = self.filepath_ir[index] label_path = self.filepath_label[index] image_vis = np.array(Image.open(vis_path)) image_inf = cv2.imread(ir_path, 0) label = np.array(Image.open(label_path)) image_vis = ( np.asarray(Image.fromarray(image_vis), dtype=np.float32).transpose( (2, 0, 1) ) / 255.0 ) image_ir = np.asarray(Image.fromarray(image_inf), dtype=np.float32) / 255.0 image_ir = np.expand_dims(image_ir, axis=0) label = np.asarray(Image.fromarray(label), dtype=np.int64) name = self.filenames_vis[index] return ( torch.tensor(image_vis), torch.tensor(image_ir), torch.tensor(label), name, ) elif self.split=='val': vis_path = self.filepath_vis[index] ir_path = self.filepath_ir[index] image_vis = np.array(Image.open(vis_path)) image_inf = cv2.imread(ir_path, 0) image_vis = ( np.asarray(Image.fromarray(image_vis), dtype=np.float32).transpose( (2, 0, 1) ) / 255.0 ) image_ir = np.asarray(Image.fromarray(image_inf), dtype=np.float32) / 255.0 image_ir = np.expand_dims(image_ir, axis=0) name = self.filenames_vis[index] return ( torch.tensor(image_vis), torch.tensor(image_ir), name, )
这段代码定义了一个自定义数据集类(可能是用于图像分割任务),其中包含了getitem方法用于获取数据。
在getitem方法中,根据数据集的split属性判断是训练集还是验证集。如果是训练集,首先获取对应索引的可见光图像路径(vis_path)、红外图像路径(ir_path)和标签路径(label_path)。然后,使用PIL库的Image.open函数读取可见光图像和标签图像,并使用cv2.imread函数读取红外图像(以灰度图像形式)。接下来,对可见光图像和红外图像进行预处理:将可见光图像转为numpy数组,并将通道维度转置为(2, 0, 1),然后除以255.0进行归一化;将红外图像转为numpy数组,并除以255.0进行归一化,再使用np.expand_dims函数在通道维度上添加一个维度。最后,将标签图像转为numpy数组,并将数据类型设置为int64。
如果是验证集,只获取可见光图像路径(vis_path)和红外图像路径(ir_path),并进行和训练集相同的预处理操作。
最后,根据数据集的split属性,返回不同的数据组合。如果是训练集,返回可见光图像、红外图像、标签图像和名称;如果是验证集,返回可见光图像、红外图像和名称。
这个数据集类用于加载图像数据,并返回用于训练或验证的数据组合。
image=np.array(grayImage,dtype=float) percent=0.001 num=int(percent*image.shape[0]*image.shape[1]) for i in range(num): temp1=np.random.randint(image.shape[0]) temp2=np.random.randint(image.shape[1]) scale=150 noise=np.random.poisson(scale,1) image[temp1][temp2]+=noise out=image if out.min()<0: low_clip=-1. else: low_clip=0. out=np.clip(out,low_clip,255) expon_image=np.uint8(out) print(expon_image.shape) cv2.imshow("expon_image",expon_image) k=cv2.waitKey(0)优化这段代码的for循环
可以使用numpy的随机函数生成随机的坐标,然后使用numpy的切片和花式索引方式对图像进行操作,可以避免使用循环。
以下是优化后的代码:
```python
import numpy as np
import cv2
grayImage = cv2.imread('test.jpg', 0)
# 转换为浮点型
image = grayImage.astype(float)
percent = 0.001
num = int(percent * image.shape[0] * image.shape[1])
# 生成随机坐标
rand_x = np.random.randint(0, image.shape[0], num)
rand_y = np.random.randint(0, image.shape[1], num)
scale = 150
noise = np.random.poisson(scale, num)
# 对图像进行操作
image[rand_x, rand_y] += noise
# 调整像素值范围
out = np.clip(image, 0, 255)
# 转换为8位整型
expon_image = out.astype(np.uint8)
print(expon_image.shape)
cv2.imshow("expon_image", expon_image)
k = cv2.waitKey(0)
```
使用numpy的切片和花式索引方式,可以避免使用循环,提高代码的效率。同时,也需要注意对图像进行操作时,需要保证图像的类型一致,避免出现类型错误的问题。
阅读全文
相关推荐

















