python动态规划之旅行商问题
时间: 2023-11-21 09:07:00 浏览: 75
基于python旅行商问题(TSP) 动态规划算法、蚁群算法、遗传算法实现源码(带数据和代码注释).zip
5星 · 资源好评率100%
以下是Python中解决旅行商问题的动态规划算法:
```python
def tsp_dp(dist):
n = len(dist)
all_points_set = set(range(n))
memo = {}
# 预处理,将所有只包含起点的情况都计算出来
for i in range(n):
memo[(frozenset([i]), i)] = (dist[i][0], 0)
for r in range(2, n+1):
for subset in itertools.combinations(all_points_set - {0}, r-1):
subset = frozenset(subset)
for k in subset:
memo[(subset, k)] = min(
(dist[i][k] + memo[(subset - {k}, i)][0], i) for i in subset if i != 0 and i != k)
# 找到最小的回路
res, _ = min((dist[i][0] + memo[(all_points_set - {0}, i)][0], i) for i in range(1, n))
path = [0]
last = _
all_points_set = all_points_set - {0}
for i in range(n-2):
next_node = memo[(all_points_set, last)][1]
path.append(next_node)
all_points_set = all_points_set - {next_node}
last = next_node
path.append(_)
return res, list(map(int, path))
```
其中,dist是一个n*n的矩阵,表示每个城市之间的距离。函数返回的是最小的车费花销和路径。
阅读全文