clc clear % 定义给定的参数和方程 M_B = 104; % B的摩尔质量 D = 1.22; % 反应器管径(m) Tm= 750+273.15; % 加热介质温度(k) Xmax = 0.98; % 出口转化率 FB= 7100 / (M_B*3600*24); % 出口B的摩尔流量(kmol/s) V= 34e-3; T0= 898; % 进入温度(K) p= 1440; % 催化剂堆积密度(kg/m^3) delta_H = 1.39e5; % 反应热(kJ/kmol) M_A = 106; % A的摩尔质量 rho_A = p / M_A; % A的密度(kg/m^3) C_P = 2.177; % 反应物料的热容(kJ/(kg * K)) psk=121 %kPa A=pi*(D/2)^2; FA0=FB/Xmax; xa=0; T=T0; L=0; while xa<0.98; pa=psk*FA0*(1-xa)/(FA0*xa+V); pb=psk*FA0*(xa)/(FA0*xa+V); pc=psk*FA0*(xa)/(FA0*xa+V); k=(2.70e-6)* exp((-10983/T)+9.44); k2=(2.84e-6)*exp((-3676.394/T)-10.525); ra=k2*pb*pc-k*pa; dL=0.001; dxa=-ra*p*A*dL/FA0; xa=xa+dxa; L=L+dL;% 计算床层高度L plot(L,xa); axis([0 5 0 1]); hold on U=140*L^(-0.33)*4.18/60/1000; dT=(delta_H*ra*A*dL-U*pi*D*dL*(T-Tm))/(V+FA0*M_A*xa)/C_P; T=T+dT; plot(L,T); axis([0 5 850 1000]); hold on end disp(L)
时间: 2024-03-31 10:35:52 浏览: 268
这段代码是一个反应器的模拟程序,计算了反应器床层高度和温度随时间的变化情况。程序中使用了一些给定的参数和方程,通过迭代计算来模拟反应器的行为。
具体来说,程序首先定义了一些参数和方程,包括反应物料的摩尔质量、反应器管径、加热介质温度、出口转化率、出口B的摩尔流量、催化剂堆积密度、反应热、反应物料的热容等。然后使用while循环来迭代计算反应器床层高度L和温度T的变化,并在每次迭代中绘制出反应器床层高度和温度随时间的变化曲线。最终输出反应器的床层高度。
需要注意的是,这段代码中有一些参数和方程是根据具体反应器的情况来设定的,如果要将程序用于其他反应器的模拟,需要根据实际情况进行相应的修改。
相关问题
clc clear all %% img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %% %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('name','滤波') imshow(img_blur) img_lab_blur = rgb2lab(img_blur); %% %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg') figure imshow(Sd_normalized) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) % 归一化至0-1 o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end改进该代码使其能在matlab上运行
clc;
clear all;
img_in = imread('ILSVRC2017_test_00000237.jpg');
m = size(img_in,1);
n = size(img_in,2);
img_lab = rgb2lab(img_in);
img_L_mean = mean(mean(img_lab(:,:,1)));
img_a_mean = mean(mean(img_lab(:,:,2)));
img_b_mean = mean(mean(img_lab(:,:,3)));
%高斯滤波
img_R = img_in(:,:,1);
img_G = img_in(:,:,2);
img_B = img_in(:,:,3);
w = fspecial('gaussian',[7 7]);
img_R_blur = imfilter(img_R,w);
img_G_blur = imfilter(img_G,w);
img_B_blur = imfilter(img_B,w);
img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur);
figure('Name','滤波');
imshow(img_blur);
img_lab_blur = rgb2lab(img_blur);
%计算显著图
Sd = zeros(m,n);
for i = 1:m
for j = 1:n
Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2);
end
end
%归一化
Sd_normalized = figure_normalize(Sd);
imwrite(Sd_normalized,'FT_saliency.jpg');
figure;
imshow(Sd_normalized);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Out_image = figure_normalize(In_image)
o_max_image = max(max(In_image));
o_min_image = min(min(In_image));
Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image);
end
请解释分析下面这段程序:%%%通过合作方式最优竞标%%% %%%目的是得到参考节点边际电价,以作为参考报价%%% clear clc load data_potential_DA %决策变量 pi_DA=sdpvar(4,96);%投标决策 S=sdpvar(4,96);%广义储能设备电量 Pg=sdpvar(10,96);%发电商分段电量 Pf=sdpvar(7,96);%馈线功率 Pch=sdpvar(4,96);%各充电站出清充电电量 Pdis=sdpvar(4,96);%各充电站出清放电电量 Lagrant_balance=sdpvar(7,96);%功率平衡约束的拉格朗日乘子 DLMP=Lagrant_balance/0.25;%配电网节点边际电价 Lagrant_G=sdpvar(1,96);%平衡节点拉格朗日乘子 Lagrant_G_left=sdpvar(10,96);%发电商电量下界 Lagrant_G_right=sdpvar(10,96);%发电商电量上界 b_Lagrant_G_left=binvar(10,96);%发电商电量下界布尔变量 b_Lagrant_G_right=binvar(10,96);%发电商电量上界布尔变量 Lagrant_L_left=sdpvar(7,96);%线路功率下界 Lagrant_L_right=sdpvar(7,96);%线路功率上界 b_Lagrant_L_left=binvar(7,96);%线路功率上界布尔变量 b_Lagrant_L_right=binvar(7,96);%线路功率下界布尔变量 Lagrant_ch_left=sdpvar(4,96);%充电站充电功率下界 Lagrant_ch_right=sdpvar(4,96);%充电站充电功率上界 b_Lagrant_ch_left=binvar(4,96);%充电站充电功率下界布尔变量 b_Lagrant_ch_right=binvar(4,96);%充电站充电功率上界布尔变量 Lagrant_dis_left=sdpvar(4,96);%充电站放电功率下界 Lagrant_dis_right=sdpvar(4,96);%充电站放电功率上界 b_Lagrant_dis_left=binvar(4,96);%充电站放电功率下界布尔变量 b_Lagrant_dis_right=binvar(4,96);%充电站放电功率上界布尔变量 %基本参数 Link=zeros(24,96);%时段换算矩阵(日前1h换算为实时15min) for i=1:24 Link(i,4*i-3:4*i)=1; end Loadcurve=[0.955391944564747,0.978345604157644,1,0.995019488956258,0.972932005197055,0.970333477695972,0.930489389346037,0.890428757037679,0.902771762667822,0.941966219142486,0.911000433087917,0.862061498484192,0.840190558683413,0.831095712429623,0.756604590731919,0.671719359029883,0.611520138588133,0.582936336076224,0.572542226071893,0.574707665656128,0.587267215244695,0.644218276310091,0.755521870939801,0.884798614118666]; Loadcurve=Loadcurve*Link;%换成96个时段 PL_base=[5.704;5.705;5.631;6.518;4.890;5.705;5.847]*1000;%负荷分布 PL=PL_base*Loadcurve;%基础负荷(负荷曲线从08:00开始算起,即第9个时段) Pf_limit=1000*[40,40,40,40,40,40,40]';%馈线功率限制 Pg_step=1000*[20,5,3,2,2,2,2,2,2,100]';%报价区间 Price_DSO=[3:12]'*0.1;%分段电价 Pchmax=[Forecast_CS1(1,1:96);Forecast_CS2(1,1:96);Forecast_CS3(1,1:96);Forecast_CS4(1,1:96)];%充电站充电报量上限 Pdismax=[Forecast_CS1(2,1:96);Forecast_CS2(2,1:96);Forecast_CS3(2,1:96);Forecast_CS4
这段程序是一个电力市场的投标决策模型,用于计算电力市场参与者的最优报价和交易策略。程序中定义了一些决策变量,如投标决策、广义储能设备电量、发电商分段电量、馈线功率等等,以及一些约束条件,如功率平衡约束、线路功率限制、充电站充放电量限制等等。程序的主要目的是计算出参考节点边际电价,以作为参考报价,并且通过合作方式最优竞标,从而获得最大的收益。程序中还定义了一些基本参数,如时段换算矩阵、负荷曲线、负荷分布、馈线功率限制、报价区间、充电站充电报量上限等等。这些基本参数和决策变量一起构成了整个电力市场的模型。
阅读全文