clc clear % 定义给定的参数和方程 M_B = 104; % B的摩尔质量 D = 1.22; % 反应器管径(m) Tm= 750+273.15; % 加热介质温度(k) Xmax = 0.98; % 出口转化率 FB= 7100 / (M_B*3600*24); % 出口B的摩尔流量(kmol/s) V= 34e-3; T0= 898; % 进入温度(K) p= 1440; % 催化剂堆积密度(kg/m^3) delta_H = 1.39e5; % 反应热(kJ/kmol) M_A = 106; % A的摩尔质量 rho_A = p / M_A; % A的密度(kg/m^3) C_P = 2.177; % 反应物料的热容(kJ/(kg * K)) psk=121 %kPa A=pi*(D/2)^2; FA0=FB/Xmax; xa=0; T=T0; L=0; while xa<0.98; pa=psk*FA0*(1-xa)/(FA0*xa+V); pb=psk*FA0*(xa)/(FA0*xa+V); pc=psk*FA0*(xa)/(FA0*xa+V); k=(2.70e-6)* exp((-10983/T)+9.44); k2=(2.84e-6)*exp((-3676.394/T)-10.525); ra=k2*pb*pc-k*pa; dL=0.001; dxa=-ra*p*A*dL/FA0; xa=xa+dxa; L=L+dL;% 计算床层高度L plot(L,xa); axis([0 5 0 1]); hold on U=140*L^(-0.33)*4.18/60/1000; dT=(delta_H*ra*A*dL-U*pi*D*dL*(T-Tm))/(V+FA0*M_A*xa)/C_P; T=T+dT; plot(L,T); axis([0 5 850 1000]); hold on end disp(L)

时间: 2024-03-31 10:35:52 浏览: 268
这段代码是一个反应器的模拟程序,计算了反应器床层高度和温度随时间的变化情况。程序中使用了一些给定的参数和方程,通过迭代计算来模拟反应器的行为。 具体来说,程序首先定义了一些参数和方程,包括反应物料的摩尔质量、反应器管径、加热介质温度、出口转化率、出口B的摩尔流量、催化剂堆积密度、反应热、反应物料的热容等。然后使用while循环来迭代计算反应器床层高度L和温度T的变化,并在每次迭代中绘制出反应器床层高度和温度随时间的变化曲线。最终输出反应器的床层高度。 需要注意的是,这段代码中有一些参数和方程是根据具体反应器的情况来设定的,如果要将程序用于其他反应器的模拟,需要根据实际情况进行相应的修改。
相关问题

clc clear all %% img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %% %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('name','滤波') imshow(img_blur) img_lab_blur = rgb2lab(img_blur); %% %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg') figure imshow(Sd_normalized) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) % 归一化至0-1 o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end改进该代码使其能在matlab上运行

clc; clear all; img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('Name','滤波'); imshow(img_blur); img_lab_blur = rgb2lab(img_blur); %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg'); figure; imshow(Sd_normalized); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end

请解释分析下面这段程序:%%%通过合作方式最优竞标%%% %%%目的是得到参考节点边际电价,以作为参考报价%%% clear clc load data_potential_DA %决策变量 pi_DA=sdpvar(4,96);%投标决策 S=sdpvar(4,96);%广义储能设备电量 Pg=sdpvar(10,96);%发电商分段电量 Pf=sdpvar(7,96);%馈线功率 Pch=sdpvar(4,96);%各充电站出清充电电量 Pdis=sdpvar(4,96);%各充电站出清放电电量 Lagrant_balance=sdpvar(7,96);%功率平衡约束的拉格朗日乘子 DLMP=Lagrant_balance/0.25;%配电网节点边际电价 Lagrant_G=sdpvar(1,96);%平衡节点拉格朗日乘子 Lagrant_G_left=sdpvar(10,96);%发电商电量下界 Lagrant_G_right=sdpvar(10,96);%发电商电量上界 b_Lagrant_G_left=binvar(10,96);%发电商电量下界布尔变量 b_Lagrant_G_right=binvar(10,96);%发电商电量上界布尔变量 Lagrant_L_left=sdpvar(7,96);%线路功率下界 Lagrant_L_right=sdpvar(7,96);%线路功率上界 b_Lagrant_L_left=binvar(7,96);%线路功率上界布尔变量 b_Lagrant_L_right=binvar(7,96);%线路功率下界布尔变量 Lagrant_ch_left=sdpvar(4,96);%充电站充电功率下界 Lagrant_ch_right=sdpvar(4,96);%充电站充电功率上界 b_Lagrant_ch_left=binvar(4,96);%充电站充电功率下界布尔变量 b_Lagrant_ch_right=binvar(4,96);%充电站充电功率上界布尔变量 Lagrant_dis_left=sdpvar(4,96);%充电站放电功率下界 Lagrant_dis_right=sdpvar(4,96);%充电站放电功率上界 b_Lagrant_dis_left=binvar(4,96);%充电站放电功率下界布尔变量 b_Lagrant_dis_right=binvar(4,96);%充电站放电功率上界布尔变量 %基本参数 Link=zeros(24,96);%时段换算矩阵(日前1h换算为实时15min) for i=1:24 Link(i,4*i-3:4*i)=1; end Loadcurve=[0.955391944564747,0.978345604157644,1,0.995019488956258,0.972932005197055,0.970333477695972,0.930489389346037,0.890428757037679,0.902771762667822,0.941966219142486,0.911000433087917,0.862061498484192,0.840190558683413,0.831095712429623,0.756604590731919,0.671719359029883,0.611520138588133,0.582936336076224,0.572542226071893,0.574707665656128,0.587267215244695,0.644218276310091,0.755521870939801,0.884798614118666]; Loadcurve=Loadcurve*Link;%换成96个时段 PL_base=[5.704;5.705;5.631;6.518;4.890;5.705;5.847]*1000;%负荷分布 PL=PL_base*Loadcurve;%基础负荷(负荷曲线从08:00开始算起,即第9个时段) Pf_limit=1000*[40,40,40,40,40,40,40]';%馈线功率限制 Pg_step=1000*[20,5,3,2,2,2,2,2,2,100]';%报价区间 Price_DSO=[3:12]'*0.1;%分段电价 Pchmax=[Forecast_CS1(1,1:96);Forecast_CS2(1,1:96);Forecast_CS3(1,1:96);Forecast_CS4(1,1:96)];%充电站充电报量上限 Pdismax=[Forecast_CS1(2,1:96);Forecast_CS2(2,1:96);Forecast_CS3(2,1:96);Forecast_CS4

这段程序是一个电力市场的投标决策模型,用于计算电力市场参与者的最优报价和交易策略。程序中定义了一些决策变量,如投标决策、广义储能设备电量、发电商分段电量、馈线功率等等,以及一些约束条件,如功率平衡约束、线路功率限制、充电站充放电量限制等等。程序的主要目的是计算出参考节点边际电价,以作为参考报价,并且通过合作方式最优竞标,从而获得最大的收益。程序中还定义了一些基本参数,如时段换算矩阵、负荷曲线、负荷分布、馈线功率限制、报价区间、充电站充电报量上限等等。这些基本参数和决策变量一起构成了整个电力市场的模型。
阅读全文

相关推荐

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

中国AI安防行业:Ambarella业绩反映AI需求强劲.zip

中国AI安防行业:Ambarella业绩反映AI需求强劲
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

挖掘机叉车工程车辆检测数据集VOC+YOLO格式5067张7类别.7z

集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5067 标注数量(xml文件个数):5067 标注数量(txt文件个数):5067 标注类别数:7 标注类别名称:[“ConcreteTruck”,“Excavator”,“Forklift”,“Loader”,“Steamroller”,“Truck”,“Worker”] 对应中文名:[“混凝土运输车”、“挖掘机”、“叉车”、“装载机”、“压路机”、”卡车“、”工人“] 更多信息:https://blog.csdn.net/FL1623863129/article/details/142093679

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.