pytorch CNN图像分割
时间: 2023-11-12 18:59:13 浏览: 143
对于图像分割任务,可以使用PyTorch实现卷积神经网络(CNN)模型。常用的CNN模型包括U-Net、SegNet、FCN等。其中,U-Net是一种常用的图像分割模型,其结构类似于自编码器,由编码器和解码器组成,可以有效地提取图像特征并进行像素级别的分割。
在PyTorch中,可以使用torchvision包中的transforms对图像进行预处理,使用torch.utils.data.Dataset和torch.utils.data.DataLoader对数据进行加载和批处理,使用torch.nn定义模型结构,使用torch.optim定义优化器,并使用torch.nn.functional中的交叉熵损失函数计算损失。
以下是一个简单的PyTorch CNN图像分割示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
# 定义U-Net模型
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
# 编码器
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
# 解码器
self.upconv1 = nn.ConvTranspose2d(512,256, 2, stride=2)
self.conv5 = nn.Conv2d(512, 256, 3, padding=1)
self.upconv2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv6 = nn.Conv2d(256, 128, 3, padding=1)
self.upconv3 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv7 = nn.Conv2d(128, 64, 3, padding=1)
self.conv8 = nn.Conv2d(64, 1, 1)
def forward(self, x):
# 编码器
x1 = F.relu(self.conv1(x))
x2 = F.relu(self.conv2(x1))
x3 = F.relu(self.conv3(x2))
x4 = F.relu(self.conv4(x3))
# 解码器
x = F.relu(self.upconv1(x4))
x = torch.cat([x, x3], dim=1)
x = F.relu(self.conv5(x))
x = F.relu(self.upconv2(x))
x = torch.cat([x, x2], dim=1)
x = F.relu(self.conv6(x))
x = F.relu(self.upconv3(x))
x = torch.cat([x, x1], dim=1)
x = F.relu(self.conv7(x))
x = self.conv8(x)
return x
# 定义数据集
class SegmentationDataset(Dataset):
def __init__(self, data_path):
self.data_path = data_path
self.transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def __len__(self):
return len(os.listdir(self.data_path))
def __getitem__(self, idx):
img_path = os.path.join(self.data_path, f"{idx}.jpg")
mask_path = os.path.join(self.data_path, f"{idx}_mask.jpg")
img = Image.open(img_path).convert('RGB')
mask = Image.open(mask_path).convert('L')
img = self.transform(img)
mask = self.transform(mask)
return img, mask
# 加载数据
train_dataset = SegmentationDataset("train_data")
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
# 定义模型、优化器和损失函数
model = UNet()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.BCEWithLogitsLoss()
# 训练模型
for epoch in range(10):
for i, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Batch {i+1}, Loss {loss.item():.4f}")
```
阅读全文