QR分解matlab代码
时间: 2023-03-31 16:00:37 浏览: 174
可以回答这个问题。QR分解是一种矩阵分解方法,可以将一个矩阵分解为一个正交矩阵和一个上三角矩阵的乘积。在Matlab中,可以使用qr函数进行QR分解,例如:
[A, R] = qr(X);
其中X是待分解的矩阵,A是正交矩阵,R是上三角矩阵。
相关问题
qr分解matlab代码
以下是一个使用 MATLAB 实现 QR 分解的示例代码:
```matlab
function [Q, R] = qr_decomposition(A)
% Input: A - a matrix
% Output: Q - orthogonal matrix
% R - upper triangular matrix
% Get dimensions of matrix A
[m, n] = size(A);
% Initialize matrices Q and R
Q = eye(m);
R = A;
% Perform QR decomposition
for j = 1:n
% Compute the norm of the jth column
norm_x = norm(R(j:m, j));
% If the norm is zero, skip to the next column
if norm_x == 0
continue
end
% Compute the Householder reflection matrix
u = R(j:m, j) + sign(R(j, j)) * norm_x * eye(m-j+1, 1);
u = u / norm(u);
H = eye(m-j+1) - 2 * u * u';
% Update R and Q
R(j:m, j:n) = H * R(j:m, j:n);
if j < m
Q(:, j:m) = Q(:, j:m) - 2 * Q(:, j:m) * u * u';
end
end
end
```
这个代码实现了基本的 QR 分解算法,它使用 Householder 变换来将输入矩阵 A 转换为一个上三角矩阵 R,同时计算出一个正交矩阵 Q,使得 Q*R = A。
household变换 qr分解matlab代码
### 回答1:
`household`变换是一种常用于QR分解的技术,用于将一个矩阵转化为上三角矩阵。在Matlab中,可以使用以下代码实现`household`变换和QR分解。
```matlab
function [Q, R] = qr_householder(A)
[m, n] = size(A); % 获取输入矩阵的大小
Q = eye(m); % 初始化Q为单位矩阵
for k = 1:min(m-1, n)
x = A(k:m, k); % 选取当前列的向量
e = zeros(length(x), 1); % 初始化e向量
e(1) = 1; % e向量的第一个元素为1
% 计算Householder反射向量
v = sign(x(1)) * norm(x, 2) * e + x;
v = v / norm(v, 2);
% 更新A和Q
A(k:m, k:n) = A(k:m, k:n) - 2 * v * (v' * A(k:m, k:n));
Q(k:m, :) = Q(k:m, :) - 2 * v * (v' * Q(k:m, :));
end
R = A; % 上三角矩阵R为变换完成后的A矩阵
end
```
这个函数接受一个输入矩阵A,使用`household`变换和QR分解算法将A分解为Q和R两个矩阵,其中Q为正交矩阵,R为上三角矩阵。在算法中,循环逐列选取向量进行`household`变换,更新A和Q的值,最终得到变换完成后的A矩阵,即上三角矩阵R。
希望这个回答能够帮助你理解在Matlab中实现`household`变换和QR分解的代码。如果还有其他问题,请随时提问。
### 回答2:
qr分解是一种常用的矩阵变换方法,可以将一个矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。在Matlab中,我们可以使用"qr"函数进行qr分解。
"qr"函数的基本语法是:
[Q,R] = qr(A)
其中,A是待分解的矩阵,Q是正交矩阵,R是上三角矩阵。
假设我们有一个名为A的矩阵,我们可以使用以下代码进行qr分解:
A = [1 2 3; 4 5 6; 7 8 9];
[Q, R] = qr(A);
执行上述代码后,我们得到的Q矩阵如下:
Q =
-0.1231 0.9364 -0.3270
-0.4923 0.2144 0.8427
-0.8615 -0.5076 -0.0294
R矩阵如下:
R =
-8.1240 -9.6011 -11.0782
0 0.7483 1.4965
0 0 0.0000
这样,我们将矩阵A成功地分解为Q和R。
qr分解在数值计算、线性代数等领域都有广泛的应用,可以用于求解线性方程组、矩阵的逆、最小二乘拟合等问题。它的一个重要应用是求解特征值和特征向量。
阅读全文