c++,获取点集的最小外接圆
时间: 2024-05-01 16:13:59 浏览: 168
获取点集的最小外接圆是一个常见的计算几何问题。在C++中,可以使用库函数或者自己实现算法来解决这个问题。
一种常见的解决方法是使用Graham扫描算法和Welzl算法的结合。具体步骤如下:
1. 首先,使用Graham扫描算法计算出点集的凸包。凸包是包含所有点的最小凸多边形。
2. 然后,使用Welzl算法计算出凸包的最小外接圆。Welzl算法是一种递归算法,它通过不断缩小包含点集的最小圆来找到最小外接圆。
以下是C++代码示例:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
struct Point {
double x, y;
};
// 计算两点之间的距离
double distance(Point p1, Point p2) {
double dx = p1.x - p2.x;
double dy = p1.y - p2.y;
return std::sqrt(dx * dx + dy * dy);
}
// 判断点是否在圆内
bool isInsideCircle(Point center, double radius, Point p) {
double d = distance(center, p);
return d <= radius;
}
// 计算三个点组成的圆的圆心和半径
void circleFromPoints(Point p1, Point p2, Point p3, Point& center, double& radius) {
double x1 = p1.x, y1 = p1.y;
double x2 = p2.x, y2 = p2.y;
double x3 = p3.x, y3 = p3.y;
double A = x2 - x1;
double B = y2 - y1;
double C = x3 - x1;
double D = y3 - y1;
double E = A * (x1 + x2) + B * (y1 + y2);
double F = C * (x1 + x3) + D * (y1 + y3);
double G = 2 * (A * (y3 - y2) - B * (x3 - x2));
if (G == 0) {
// 三点共线,无法构成圆
center.x = 0;
center.y = 0;
radius = 0;
return;
}
center.x = (D * E - B * F) / G;
center.y = (A * F - C * E) / G;
radius = distance(center, p1);
}
// 使用Welzl算法计算最小外接圆
void minEnclosingCircle(std::vector<Point>& points, std::vector<Point>& boundaryPoints, Point& center, double& radius) {
int n = points.size();
if (n == 0) {
center.x = 0;
center.y = 0;
radius = 0;
return;
}
else if (n == 1) {
center = points[0];
radius = 0;
return;
}
else if (n == 2) {
center.x = (points[0].x + points[1].x) / 2;
center.y = (points[0].y + points[1].y) / 2;
radius = distance(center, points[0]);
return;
}
else if (n == 3) {
circleFromPoints(points[0], points[1], points[2], center, radius);
return;
}
// 从点集中随机选择一个点
int randomIndex = rand() % n;
Point randomPoint = points[randomIndex];
// 从点集中移除该点
points.erase(points.begin() + randomIndex);
// 递归计算剩余点集的最小外接圆
minEnclosingCircle(points, boundaryPoints, center, radius);
// 如果随机点在最小外接圆内,则直接返回
if (isInsideCircle(center, radius, randomPoint)) {
return;
}
// 将随机点添加到边界点集中
boundaryPoints.push_back(randomPoint);
// 递归计算包含边界点集和随机点的最小外接圆
minEnclosingCircle(boundaryPoints, boundaryPoints, center, radius);
// 清空边界点集
boundaryPoints.clear();
}
int main() {
std::vector<Point> points = { {1, 1}, {2, 3}, {4, 2}, {5, 4}, {6, 1} };
std::vector<Point> boundaryPoints;
Point center;
double radius;
minEnclosingCircle(points, boundaryPoints, center, radius);
std::cout << "Center: (" << center.x << ", " << center.y << ")" << std::endl;
std::cout << "Radius: " << radius << std::endl;
return 0;
}
```
这段代码使用了结构体`Point`来表示点的坐标,通过`minEnclosingCircle`函数计算最小外接圆的圆心和半径。你可以根据自己的需求修改点集的输入方式和输出方式。
阅读全文