无约束优化牛顿法python
时间: 2023-10-01 09:10:18 浏览: 80
基于Python求解最优化无约束优化问题(源码).rar
5星 · 资源好评率100%
以下是无约束优化牛顿法的Python代码:
```python
import numpy as np
def newton_method(f, grad, hess, x0, tol=1e-6, max_iter=100):
"""
Newton's method for unconstrained optimization.
Parameters:
f (function): objective function.
grad (function): gradient of the objective function.
hess (function): Hessian of the objective function.
x0 (array): initial guess.
tol (float): tolerance for stopping condition.
max_iter (int): maximum number of iterations.
Returns:
x (array): optimal solution.
f_val (float): objective function value at the optimal solution.
"""
x = x0
for i in range(max_iter):
g = grad(x)
H = hess(x)
p = np.linalg.solve(H, -g)
x += p
if np.linalg.norm(p) < tol:
break
f_val = f(x)
return x, f_val
```
其中,参数`f`为目标函数,`grad`为目标函数的梯度函数,`hess`为目标函数的海森矩阵函数,`x0`为初始猜测值,`tol`为停止条件的容差,`max_iter`为最大迭代次数。
函数内部使用了`numpy`库的线性代数求解器`solve`来求解牛顿方程中的步长$p$。在每次迭代中,如果步长的$L_2$范数小于容差`tol`,则停止迭代。最终返回最优解`x`和目标函数在该解处的取值`f_val`。
阅读全文