以八数码问题为例,实现A*算法的求解程序,要求设计两种不同的估价函数。
时间: 2024-11-27 08:20:39 浏览: 61
八数码问题(也称为滑动拼图游戏)是一个典型的启发式搜索问题,可以使用A*算法来解决。A*算法结合了最佳优先搜索(Best First Search)和启发式函数来找到从起始状态到目标状态的最短路径。以下是实现A*算法的基本步骤:
1. **初始化**:创建一个队列,将起始状态放入其中,并设置当前节点为起始状态。
2. **计算F值**:对于每个节点,计算两个值:G值(从初始状态到当前状态的实际代价),通常为1;H值(启发式估计,从当前状态到目标状态的最小代价)。F值等于G值加上H值。
3. **选择节点**:从队列中选择F值最小的节点作为下一个执行节点。
4. **扩展节点**:如果当前节点是目标状态,则搜索结束;否则,将其所有可行的相邻状态加入队列,更新它们的G、H和F值。
5. **递归过程**:重复步骤2-4,直到找到目标状态或队列为空。
对于不同的估价函数设计,我们可以有:
- **曼哈顿距离**:每个棋子移动一个位置相当于平移一格,总和各个棋子横纵坐标之差的绝对值。简单直观,但可能不是最优的。
- **欧几里得距离**:计算棋子到目标棋盘位置的直线距离平方的平方根。比曼哈顿距离更精细,但也更复杂一些。
在实现时,你需要为每个节点维护一个评估函数的实例,例如`HeuristicFunction`类,它有一个计算方法`calculate()`,返回从当前节点到目标节点的估算费用。然后在A*搜索过程中,每次节点选择和扩展时都会调用这个方法。
```python
class ManhattanDistance(HeuristicFunction):
# 实现计算曼哈顿距离的方法
class EuclideanDistance(HeuristicFunction):
# 实现计算欧几里得距离的方法
def a_star(start_state, goal_state):
open_list = PriorityQueue()
start_state.g = 0
start_state.h = manhattan_distance(start_state, goal_state) or euclidean_distance(start_state, goal_state)
start_state.f = start_state.g + start_state.h
open_list.enqueue(start_state)
while not open_list.is_empty():
current_state = open_list.dequeue()
# 检查是否达到目标
if current_state == goal_state:
return reconstruct_path(current_state)
# 扩展节点并更新开放列表
for next_state in get_neighbors(current_state):
tentative_g = current_state.g + cost_between(current_state, next_state)
if next_state not in closed_list or tentative_g < next_state.g:
next_state.g = tentative_g
next_state.h = ... # 根据选择的估价函数计算
next_state.f = next_state.g + next_state.h
open_list.enqueue(next_state)
```
阅读全文
相关推荐


















