以8数码问题实现A*算法的求解程序,要求设计两种不同的估价函数python生成代码
时间: 2024-11-20 12:41:01 浏览: 55
8数码问题也称为八皇后问题,是一个经典的回溯算法示例,用于在一个8x8的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。A*算法在此问题中可以用来寻找最短解决方案,结合合适的启发式估价函数。
以下是两种不同估价函数的Python代码实现,分别基于曼哈顿距离和欧几里得距离:
**曼哈顿距离估价函数:**
```python
def manhattan_distance(position):
distance = sum(abs(row - col) for row, col in enumerate(position))
return distance
def a_star_search_manhattan(start, end, heuristic):
open_list = [(start, 0)]
closed_list = set()
while open_list:
current_state, cost_so_far = heappop(open_list)
if current_state == end:
path = reconstruct_path(closed_list, start, current_state)
return path, cost_so_far
closed_list.add(current_state)
for neighbor, move_cost in generate_neighbors(current_state):
new_cost = cost_so_far + move_cost + heuristic(neighbor)
if neighbor not in closed_list or new_cost < graph[neighbor]:
graph[neighbor] = new_cost
heappush(open_list, (neighbor, new_cost))
# ...其他函数省略...
```
**欧几里得距离估价函数:**
```python
def euclidean_distance(position):
x_diff = abs(position[0] - position[1])
y_diff = abs(position[2] - position[3])
return x_diff + y_diff
def a_star_search_euclidean(start, end, heuristic):
# ...同上,只需替换manhattan_distance为euclidean_distance即可...
# ...其他函数省略...
```
在这两个版本中,`generate_neighbors()`函数负责生成当前位置的所有合法邻居状态,`graph`是记录每个位置成本的数据结构。`reconstruct_path()`用于从结束节点逆向重建路径。
阅读全文
相关推荐


















