如何写出pytorch
时间: 2024-09-06 17:08:19 浏览: 40
编写 PyTorch 程序通常涉及以下几个步骤:
1. **导入模块**:首先需要导入PyTorch的核心模块 `torch` 和可能需要的数据加载模块(如`torchvision`):
```python
import torch
import torchvision
```
2. **张量操作**:PyTorch 的核心数据结构是张量(Tensor),你可以创建、操作和转换张量:
```python
x = torch.tensor([1., 2., 3.]) # 创建一个一维张量
y = torch.rand(2, 3) # 创建随机二维张量
```
3. **定义模型**:使用 PyTorch 构建神经网络模型,通常是通过 `nn.Module` 类或其子类来实现:
```python
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc = torch.nn.Linear(3, 4)
def forward(self, x):
return self.fc(x)
model = Net()
```
4. **定义损失函数和优化器**:
```python
criterion = torch.nn.MSELoss() # 对于回归任务,比如均方误差
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
```
5. **训练循环**:
- 预测和计算损失
- 反向传播
- 更新权重
```python
for epoch in range(num_epochs):
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
6. **测试与评估**:
```python
with torch.no_grad():
predictions = model(test_data)
accuracy = compute_accuracy(predictions, test_labels)
```
7. **保存与加载模型**:
```python
torch.save(model.state_dict(), 'model.pth')
model.load_state_dict(torch.load('model.pth'))
```
阅读全文