python博弈树minmax代码
时间: 2024-11-24 21:23:22 浏览: 25
在Python中,使用Minimax算法来解决博弈树问题通常用于创建简单的游戏策略,如井字游戏(Tic Tac Toe)或国际象棋。以下是基本的Minimax算法和阿尔法-贝塔剪枝版本的简单实现:
```python
def minimax(node, depth, is_maximizing):
# Base case: terminal node (game over)
if node.is_game_over():
return evaluate_node(node)
# Base case: reached max depth or no further moves left
if depth == 0 or not node.children:
return evaluate_node(node)
# Maximizing player
if is_maximizing:
best_value = -float('inf')
for child in node.children:
value = minimax(child, depth - 1, False)
best_value = max(best_value, value)
return best_value
# Minimizing player
worst_value = float('inf')
for child in node.children:
value = minimax(child, depth - 1, True)
worst_value = min(worst_value, value)
return worst_value
def alpha_beta_prune(node, depth, alpha, beta, is_maximizing):
if node.is_game_over():
return evaluate_node(node)
if depth == 0 or not node.children:
return evaluate_node(node)
if is_maximizing:
best_value = -float('inf')
for child in node.children:
value = alpha_beta_prune(child, depth - 1, alpha, beta, False)
best_value = max(best_value, value)
alpha = max(alpha, best_value)
if beta <= alpha:
break # Pruning condition: beta cut-off
return best_value
else:
worst_value = float('inf')
for child in node.children:
value = alpha_beta_prune(child, depth - 1, alpha, beta, True)
worst_value = min(worst_value, value)
beta = min(beta, worst_value)
if beta <= alpha:
break # Pruning condition: alpha cut-off
return worst_value
# 使用示例:
# 初始化游戏节点、设置初始搜索深度和剪枝参数
game_tree = initialize_game_tree()
depth = 5
alpha = -float('inf')
beta = float('inf')
# Call the minimax or alpha_beta_prune function to determine best move
best_move = minimax(game_tree.root, depth, True) or alpha_beta_prune(game_tree.root, depth, alpha, beta, True)
```
请注意,这只是一个基础框架,实际应用需要根据具体的游戏规则(比如棋盘大小、棋子移动规则等)来构建游戏节点,并实现`is_game_over()`、`evaluate_node()`以及节点的子节点生成。同时,这个代码并没有包含交互式用户输入的部分。
阅读全文