color_blobs = img.find_blobs([red,blue, yellow])
时间: 2024-04-15 17:26:51 浏览: 140
color_blobs = img.find_blobs([red, blue, yellow]) 是一个用于在图像中找到一组颜色块的函数调用。接受一个包含待检测颜色的列表作为参数,并返回一个包含检测到的颜色块的列表。
在这个例子中,`red`、`blue`和`yellow`是颜色对象,可能是预定义的颜色常量或者是用于定义颜色范围的参数。`img`代表输入图像。
调用`find_blobs`函数后,返回的`color_blobs`列表包含了找到的颜色块的相关信息,比如位置、大小和像素值等。
请注意,这只是一个示例,实际使用时需要根据具体情况定义和处理颜色对象和图像对象。
相关问题
我这样使用find_blobs,但是还是报错了,为什么?red_blobs = img.find_blobs([red_threshold], pixels_threshold=200, area_threshold=200)
根据您提供的代码,您似乎是在使用图像处理库 SimpleCV 中的 `find_blobs` 方法。然而,根据报错信息 "AttributeError: 'numpy.ndarray' object has no attribute 'find_blobs'",这个错误是因为 NumPy 数组对象没有名为 `find_blobs` 的属性。
这个错误通常发生在以下几种情况下:
1. 您可能未正确导入 SimpleCV 库。请确保已经正确安装了 SimpleCV 并从正确的地方导入库。通常的导入语句是 `import SimpleCV as scv`。
2. 您可能未正确初始化图像对象。在调用 `find_blobs` 方法之前,您需要先创建一个 SimpleCV 图像对象。您可以使用 `Image` 类来加载图像文件或者从摄像头读取图像。例如,`img = scv.Image("image.jpg")` 或者 `img = scv.Camera().getImage()`。
3. 您可能使用了错误的对象进行调用。请确保调用 `find_blobs` 方法的对象是一个 SimpleCV 图像对象,而不是一个 NumPy 数组对象。如果需要,可以先将 NumPy 数组转换为 SimpleCV 图像对象。
请检查以上几点,并根据实际情况进行调整和修复。如果问题仍然存在,请提供更多相关的代码和报错信息,以便我能够更好地帮助您解决问题。
import sensor import image import lcd import time lcd.init(freq=15000000) sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.run(1) green_threshold = (0, 80, -70, -10, -0, 30) while True: img=sensor.snapshot() blobs = img.find_blobs([green_threshold]) if blobs: for b in blobs: tmp=img.draw_rectangle(b[0:4]) tmp=img.draw_cross(b[5], b[6]) c=img.get_pixel(b[5], b[6]) lcd.display(img)
你的代码看起来是在MaixPy中使用K210摄像头进行图像识别,并将结果显示在LCD上。根据你的代码,我可以看到你正在寻找绿色物体,并在图像上标记出找到的物体。
然而,根据你之前提到的问题,图像可能太暗,导致无法准确找到绿色物体。你可以尝试调整曝光时间和增益值来改善图像亮度,如下所示:
```python
import sensor
import image
import lcd
import time
lcd.init(freq=15000000)
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_auto_exposure(True) # 使用自动曝光
sensor.set_auto_gain(True) # 使用自动增益
sensor.run(1)
green_threshold = (0, 80, -70, -10, -0, 30)
while True:
img = sensor.snapshot()
blobs = img.find_blobs([green_threshold])
if blobs:
for b in blobs:
tmp = img.draw_rectangle(b[0:4])
tmp = img.draw_cross(b[5], b[6])
c = img.get_pixel(b[5], b[6])
lcd.display(img)
```
在上述代码中,我将摄像头的曝光时间和增益值设置为自动模式(`sensor.set_auto_exposure(True)`和`sensor.set_auto_gain(True)`),让摄像头根据当前环境光线自动调整这些参数。这可能会改善图像亮度,并提高绿色物体的检测准确性。
如果问题仍然存在,你可以尝试调整阈值范围 (`green_threshold`) 来更好地适应当前环境中绿色物体的颜色。通过尝试不同的阈值范围,你可以找到最适合你的应用的设置。
希望这些调整能帮助你解决问题!如果还有其他问题,请随时提问。
阅读全文