设正弦波f(t)=sin(2Π×100t)(v),s(t)f=800Hz,A=2V 的周期矩形脉冲,求f(s) 的频谱,并画出频谱图
时间: 2024-01-24 08:18:16 浏览: 85
spectrum.zip_qt 音频 频谱_qt 音频波形_qt 频谱分析_qt 频谱图_频谱分析
5星 · 资源好评率100%
根据采样定理,采样频率要大于信号频率的两倍,因此采样频率应该大于1600 Hz,选择采样频率为2 kHz。
首先,使用正弦波的采样公式进行采样:
f(nT) = sin(2πfnT)
其中,T是采样时间间隔,f是信号频率,n为采样点数。根据题目中的数据,T=1/2000秒,f=100 Hz,因此有:
f(0) = sin(0) = 0
f(T) = sin(2πfT) = sin(π/5) ≈ 0.5878
f(2T) = sin(4πfT) = sin(2π/5) ≈ 0.9511
f(3T) = sin(6πfT) = sin(3π/5) ≈ 0.9511
f(4T) = sin(8πfT) = sin(4π/5) ≈ 0.5878
f(5T) = sin(10πfT) = sin(π) = 0
因此,采样后的周期矩形脉冲可以表示为以下序列:
[0, 0.5878, 0.9511, 0.9511, 0.5878, 0]
接下来,对序列进行DFT变换,得到其频谱:
F(k) = Σ[n=0, N-1] f(n)e^(-j2πnk/N)
其中,N是序列的长度,k是频谱序列的下标。
根据上述序列,可以得到N=6,因此:
F(0) = 0 + 0.5878 + 0.9511 + 0.9511 + 0.5878 + 0 = 3.0778
F(1) = 0 + 0.5878e^(-j2π/6) + 0.9511e^(-j4π/6) - 0.9511e^(-j2π/6) - 0.5878e^(-j4π/6) + 0 = -0.6928 - j1.1077
F(2) = 0 + 0.5878e^(-j4π/6) - 0.9511e^(-j8π/6) - 0.9511e^(-j4π/6) + 0.5878e^(-j8π/6) + 0 = -1.6824
F(3) = 0 + 0.5878e^(-j6π/6) - 0.9511e^(-j12π/6) + 0.9511e^(-j6π/6) - 0.5878e^(-j12π/6) + 0 = -0.6928 + j1.1077
F(4) = 0 + 0.5878e^(-j8π/6) + 0.9511e^(-j16π/6) + 0.9511e^(-j8π/6) + 0.5878e^(-j16π/6) + 0 = 3.0778
F(5) = 0 + 0.5878e^(-j10π/6) + 0.9511e^(-j20π/6) - 0.9511e^(-j10π/6) - 0.5878e^(-j20π/6) + 0 = -0.6928 - j1.1077
因此,f(s)的频谱为:
F(k) = [3.0778, -0.6928-j1.1077, -1.6824, -0.6928+j1.1077, 3.0778, -0.6928-j1.1077]
最后,画出频谱图(以幅度为纵坐标):
阅读全文