实现分支限界0-1背包问题C语言代码
时间: 2023-10-22 10:25:30 浏览: 120
好的,以下是一个分支限界法解决0-1背包问题的C语言代码:
```c
#include <stdio.h>
#include <stdlib.h>
// 物品结构体
struct item {
int value; // 价值
int weight; // 重量
};
// 优先队列结构体
struct priority_queue {
int size; // 队列大小
int capacity; // 队列容量
int *values; // 储存价值的数组
int *weights; // 储存重量的数组
int *bound_values; // 储存上界的数组
};
// 初始化优先队列
struct priority_queue *init_priority_queue(int capacity) {
struct priority_queue *pq = (struct priority_queue *)malloc(sizeof(struct priority_queue));
pq->size = 0;
pq->capacity = capacity;
pq->values = (int *)malloc(capacity * sizeof(int));
pq->weights = (int *)malloc(capacity * sizeof(int));
pq->bound_values = (int *)malloc(capacity * sizeof(int));
return pq;
}
// 销毁优先队列
void destroy_priority_queue(struct priority_queue *pq) {
free(pq->values);
free(pq->weights);
free(pq->bound_values);
free(pq);
}
// 向优先队列中插入元素
void insert(struct priority_queue *pq, int value, int weight, int bound_value) {
if (pq->size < pq->capacity) {
pq->values[pq->size] = value;
pq->weights[pq->size] = weight;
pq->bound_values[pq->size] = bound_value;
pq->size++;
}
}
// 交换两个元素
void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;
}
// 选择排序优先队列
void selection_sort(struct priority_queue *pq) {
for (int i = 0; i < pq->size - 1; i++) {
int min_index = i;
for (int j = i + 1; j < pq->size; j++) {
double unit_value1 = (double)pq->values[j] / pq->weights[j];
double unit_value2 = (double)pq->values[min_index] / pq->weights[min_index];
if (unit_value1 > unit_value2) {
min_index = j;
}
}
swap(&pq->values[i], &pq->values[min_index]);
swap(&pq->weights[i], &pq->weights[min_index]);
swap(&pq->bound_values[i], &pq->bound_values[min_index]);
}
}
// 分支限界法求解0-1背包问题
int knapsack(struct item *items, int n, int capacity) {
int max_value = 0;
struct priority_queue *pq = init_priority_queue(n);
int *current_values = (int *)calloc(n, sizeof(int));
int *current_weights = (int *)calloc(n, sizeof(int));
int *current_bound_values = (int *)calloc(n, sizeof(int));
int current_weight = 0;
int current_value = 0;
int index = 0;
int bound_value = 0;
int temp_value = 0;
int temp_weight = 0;
int temp_bound_value = 0;
int left_weight = 0;
while (index != n) {
if (current_weight + items[index].weight <= capacity) {
current_weight += items[index].weight;
current_value += items[index].value;
current_values[index] = items[index].value;
current_weights[index] = items[index].weight;
index++;
if (index == n) {
max_value = current_value;
}
} else {
bound_value = current_value;
left_weight = capacity - current_weight;
while (left_weight > 0 && index < n) {
if (items[index].weight <= left_weight) {
bound_value += items[index].value;
left_weight -= items[index].weight;
current_values[index] = items[index].value;
current_weights[index] = items[index].weight;
} else {
temp_value = items[index].value;
temp_weight = items[index].weight;
temp_bound_value = bound_value + (double)left_weight / temp_weight * temp_value;
insert(pq, current_value + temp_bound_value, current_weight + left_weight, temp_bound_value);
current_values[index] = (double)left_weight / temp_weight * temp_value;
current_weights[index] = left_weight;
bound_value += current_values[index];
left_weight = 0;
}
index++;
}
if (left_weight == 0) {
max_value = current_value + bound_value;
} else {
break;
}
}
}
while (pq->size > 0) {
selection_sort(pq);
int value = pq->values[0];
int weight = pq->weights[0];
int bound_value = pq->bound_values[0];
pq->size--;
pq->values[0] = pq->values[pq->size];
pq->weights[0] = pq->weights[pq->size];
pq->bound_values[0] = pq->bound_values[pq->size];
index = 0;
while (index < n && current_weights[index] != 0) {
index++;
}
if (index == n) {
if (value > max_value) {
max_value = value;
}
continue;
}
current_weight = weight;
current_value = value - bound_value;
current_values[index] = (double)current_weight / current_weights[index] * current_values[index];
current_weights[index] = current_weight;
bound_value = current_value;
left_weight = capacity - current_weight;
index++;
while (left_weight > 0 && index < n) {
if (items[index].weight <= left_weight) {
bound_value += items[index].value;
left_weight -= items[index].weight;
current_values[index] = items[index].value;
current_weights[index] = items[index].weight;
} else {
temp_value = items[index].value;
temp_weight = items[index].weight;
temp_bound_value = bound_value + (double)left_weight / temp_weight * temp_value;
insert(pq, current_value + temp_bound_value, current_weight + left_weight, temp_bound_value);
current_values[index] = (double)left_weight / temp_weight * temp_value;
current_weights[index] = left_weight;
bound_value += current_values[index];
left_weight = 0;
}
index++;
}
if (left_weight == 0) {
if (current_value + bound_value > max_value) {
max_value = current_value + bound_value;
}
}
}
destroy_priority_queue(pq);
free(current_values);
free(current_weights);
free(current_bound_values);
return max_value;
}
int main() {
int n = 5; // 物品数量
int capacity = 10; // 背包容量
struct item items[] = {{5, 3}, {4, 5}, {7, 2}, {8, 4}, {2, 1}}; // 物品数组
int max_value = knapsack(items, n, capacity); // 求解最大价值
printf("The maximum value is %d.\n", max_value);
return 0;
}
```
这段代码使用优先队列来存储可能的解,并使用选择排序来选择最优的解。由于每个节点只有两种可能的子节点,因此时间复杂度为 $O(2^n)$。此外,该算法还使用了一些剪枝技术,如上界估计和可行性剪枝,以提高效率。
阅读全文