matlab 实现高斯消元
时间: 2023-11-13 10:56:23 浏览: 104
好的,关于 Matlab 实现高斯消元,可以按照以下步骤进行:
1. 构造增广矩阵,即将系数矩阵和常数向量合并成一个大矩阵。
2. 利用高斯消元法将增广矩阵化为上三角矩阵。
3. 利用回带法求解方程组。
具体实现代码如下:
```matlab
function x = gauss_elimination(A, b)
% A: 系数矩阵
% b: 常数向量
% x: 方程组的解
n = size(A, 1);
Ab = [A, b]; % 构造增广矩阵
% 高斯消元
for k = 1:n-1
for i = k+1:n
factor = Ab(i,k) / Ab(k,k);
Ab(i,k:n+1) = Ab(i,k:n+1) - factor * Ab(k,k:n+1);
end
end
% 回带求解
x = zeros(n, 1);
x(n) = Ab(n,n+1) / Ab(n,n);
for i = n-1:-1:1
x(i) = (Ab(i,n+1) - Ab(i,i+1:n) * x(i+1:n)) / Ab(i,i);
end
end
```
相关问题
matlab实现高斯消元
高斯消元是一种线性方程组求解方法,可以用 MATLAB 来实现。以下是一个简单的 MATLAB 代码示例:
```matlab
% 定义系数矩阵 A 和常数向量 b
A = [2, -1, 0; -1, 2, -1; 0, -1, 2];
b = [1; 0; 1];
% 将系数矩阵 A 和常数向量 b 合并成增广矩阵 Ab
Ab = [A, b];
% 使用高斯消元法求解增广矩阵 Ab
n = size(Ab, 1); % 方程组的个数
for k = 1:n-1
for i = k+1:n
factor = Ab(i,k) / Ab(k,k);
Ab(i,k:n+1) = Ab(i,k:n+1) - factor * Ab(k,k:n+1);
end
end
% 回带求解
x = zeros(n,1);
x(n) = Ab(n,n+1) / Ab(n,n);
for i = n-1:-1:1
x(i) = (Ab(i,n+1) - Ab(i,i+1:n) * x(i+1:n)) / Ab(i,i);
end
% 输出解向量 x
disp(x);
```
运行以上代码,即可求解系数矩阵为 `A`,常数向量为 `b` 的线性方程组。
matlab编写高斯消元
好的,以下是 MATLAB 编写高斯消元的代码:
```matlab
function [x] = gauss_elimination(A, b)
% 高斯消元求解线性方程组 Ax = b
% 输入参数:系数矩阵 A,常数向量 b
% 输出参数:解向量 x
n = size(A, 1); % 系数矩阵的行数
Ab = [A, b]; % 增广矩阵
% 高斯消元过程
for k = 1:n-1
for i = k+1:n
Ab(i,:) = Ab(i,:) - Ab(k,:) * Ab(i,k) / Ab(k,k);
end
end
% 回带过程
x = zeros(n, 1);
x(n) = Ab(n,n+1) / Ab(n,n);
for i = n-1:-1:1
x(i) = (Ab(i,n+1) - Ab(i,i+1:n) * x(i+1:n)) / Ab(i,i);
end
end
```
阅读全文
相关推荐
















