自编码网络保存训练模型代码
时间: 2024-02-18 16:31:47 浏览: 62
以下是自编码网络保存训练模型的代码,供您参考:
```python
import tensorflow as tf
## 建立自编码网络
input_layer = tf.keras.layers.Input(shape=(784,))
encoded = tf.keras.layers.Dense(128, activation='relu')(input_layer)
encoded = tf.keras.layers.Dense(64, activation='relu')(encoded)
encoded = tf.keras.layers.Dense(32, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(64, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(128, activation='relu')(decoded)
decoded = tf.keras.layers.Dense(784, activation='sigmoid')(decoded)
autoencoder = tf.keras.models.Model(inputs=input_layer, outputs=decoded)
## 编译模型
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
## 训练模型
(autoencoder_train, _), _ = tf.keras.datasets.mnist.load_data()
autoencoder_train = autoencoder_train.astype('float32') / 255.
autoencoder_train = autoencoder_train.reshape((len(autoencoder_train), 784))
autoencoder.fit(autoencoder_train, autoencoder_train,
epochs=50,
batch_size=256,
shuffle=True)
## 保存模型
autoencoder.save('autoencoder.h5')
```
请问您还有其他问题吗?
阅读全文