以基函数:1,x,x^2,x^3,...,x^n为基函数,使用待定系数法确定一个n次多项式,满足过f(x_i)=y_i,i=0,1,2,...n;用matlab来写
时间: 2024-09-16 14:06:13 浏览: 76
以给定的一组点 (x_0, y_0), (x_1, y_1), ..., (x_n, y_n) 来确定一个 n 次多项式 P(x) = a_n*x^n + a_{n-1}*x^{n-1} + ... + a_1*x + a_0 的系数,可以使用待定系数法(也称为插值法)。在 MATLAB 中,这种操作通常通过 `polyfit` 函数来完成。
以下是 MATLAB 中的步骤:
```matlab
% 定义 x 和 y 的数据点
x = [x_0, x_1, ..., x_n];
y = [y_0, y_1, ..., y_n];
% 使用 polyfit 函数求解多项式的系数
coeffs = polyfit(x, y, n);
% 现在 coeffs 就是一个向量,它的元素对应于多项式的系数:a_n, a_{n-1}, ..., a_1, a_0
% 如果需要得到多项式表达式的形式,可以使用 polyval 函数
% 例如,多项式 P(x) 可以表示为:
% p = @(x) polyval(coeffs, x);
p = @(x) sum(coeffs(1:end).*x.^(0:n));
```
相关问题
arcsinx/1+x^2求积分
可以使用部分分式分解法来求解这个积分。
首先,我们对被积函数进行部分分式分解:
arcsinx / (1 + x^2) = A * arctan(x) + B * arcsinx
其中,A 和 B 是待定系数。
然后,我们对这个等式两边同时求导:
d/dx (arcsinx / (1 + x^2)) = d/dx (A * arctan(x) + B * arcsinx)
(1 / (1 + x^2)) * (1 / sqrt(1 - x^2)) / (1 + x^2) = A / (1 + x^2) + B * (1 / sqrt(1 - x^2))
接下来,我们可以取 x = 0,得到:
(1 / 2) * (1 / sqrt(1 - 0^2)) = A / (1 + 0^2) + B * (1 / sqrt(1 - 0^2))
1 / 2 = A + B
接着,我们可以令 x = tan(t),得到:
arcsinx = arctan(t)
1 + x^2 = 1 + tan^2(t) = sec^2(t)
dx/dt = sec^2(t)
将 x 和 dx/dt 用 t 表示,得到:
arcsin(tan(t)) / (1 + tan^2(t)) = A * t' + B * arctan(tan(t))
arctan(sin(t) / cos(t)) / (1 + sin^2(t) / cos^2(t)) = A * sec^2(t) + B * t
cos(t) * arctan(sin(t) / cos(t)) / (cos^2(t) + sin^2(t)) = A * cos^2(t) + B * t * cos^2(t)
cos(t) * arctan(sin(t) / cos(t)) = A * cos^4(t) + B * t * cos^2(t)
令 t = π/4,得到:
arcsin(1/sqrt(2)) / (1 + 1/2) = A * cos^4(π/4) + B * π/4 * cos^2(π/4)
1 / (3 * sqrt(2)) = A * (1/2)^2 + B * (1/2) * π/4
1 / (3 * sqrt(2)) = A / 4 + B * π / (8 * sqrt(2))
联立前面求得的两个式子,解得:
A = (2 * sqrt(2)) / 3
B = (-π * sqrt(2)) / 12
因此,原式的积分为:
∫(arcsinx / (1 + x^2)) dx = (2 * sqrt(2) / 3) * arctan(x) - (π * sqrt(2) / 12) * arcsinx + C
其中,C 为常数项。
求∫[-1,1] x(cosx)^3/(x^2+1)
这是一个比较复杂的积分,需要使用部分分式分解和换元法来求解。
首先,我们对分母进行因式分解:
x^2 + 1 = (x + i)(x - i)
然后,我们可以将被积函数写成如下形式:
x(cosx)^3/(x^2+1) = Ax + B/(x + i) + C/(x - i)
其中,A、B、C是待定系数。将上式通分并整理得:
x(cosx)^3/(x^2+1) = [(A + B + C)x^2 + (C - B)i^2 + (Bi - Ci)x]/[(x + i)(x - i)(x^2 + 1)]
由于 i^2 = -1,上式可以进一步化简为:
x(cosx)^3/(x^2+1) = [(A + B + C)x^2 + (B - C)x]/[(x^2 + 1)^2 - (2x)^2]
接下来,我们需要确定待定系数 A、B、C 的值。为此,我们可以将上式两边同时乘以分母 (x^2 + 1)^2 - (2x)^2,得到:
x(cosx)^3 = [(A + B + C)x^2 + (B - C)x][(x^2 + 1)^2 - (2x)^2]
展开并比较系数,可以得到:
A + B + C = 0
B - C = 0
2A - 2B = 1
解以上方程组,可以得到:
A = 1/4
B = 1/2
C = -3/4
因此,原积分可以化为三个部分积分:
∫[-1,1] x(cosx)^3/(x^2+1) dx = ∫[-1,1] (1/4)x dx + ∫[-1,1] (1/2)/(x + i) dx + ∫[-1,1] (-3/4)/(x - i) dx
第一个积分很容易计算,结果为 0。对于第二个积分,我们可以做如下换元:
t = x + i
dx = dt
将积分区间从 [-1,1] 变为 [-1-i,1-i],得到:
∫[-1,1] (1/2)/(x + i) dx = ∫[-1-i,1-i] (1/2)/t dt = (1/2)ln(2i)
同理,对于第三个积分,我们可以做如下换元:
t = x - i
dx = dt
将积分区间从 [-1,1] 变为 [-1+i,1+i],得到:
∫[-1,1] (-3/4)/(x - i) dx = ∫[-1+i,1+i] (-3/4)/t dt = (-3/4)ln(2i)
综上所述,原积分的值为:
∫[-1,1] x(cosx)^3/(x^2+1) dx = (1/2)ln(2i) - (3/4)ln(2i) = -(1/4)ln(2)
阅读全文
相关推荐
















