C语言分治法解决凸包问题
时间: 2023-12-05 10:04:01 浏览: 116
凸包问题是计算几何学中的经典问题,可以使用分治法进行解决。下面是使用C语言实现的分治法解决凸包问题的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
// 定义二维坐标点结构体
typedef struct {
int x;
int y;
} Point;
// 计算两点之间的距离
double dist(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
// 计算三个点构成的三角形面积
double triangleArea(Point a, Point b, Point c) {
return abs(a.x * b.y + b.x * c.y + c.x * a.y - a.y * b.x - b.y * c.x - c.y * a.x) / 2.0;
}
// 求解凸包
void convexHull(Point points[], int n, Point hull[], int *hullSize) {
// 基本情况
if (n <= 1) {
*hullSize = n;
hull[0] = points[0];
return;
}
// 分治
int mid = n / 2;
Point leftHull[mid + 1];
Point rightHull[n - mid + 1];
int leftHullSize, rightHullSize;
convexHull(points, mid, leftHull, &leftHullSize);
convexHull(points + mid, n - mid, rightHull, &rightHullSize);
// 合并
int leftIndex = 0, rightIndex = 0;
int bottomLeftIndex = 0, bottomRightIndex = 0, topLeftIndex = 0, topRightIndex = 0;
for (int i = 0; i < leftHullSize + rightHullSize; i++) {
if (leftIndex == leftHullSize) {
hull[i] = rightHull[rightIndex++];
} else if (rightIndex == rightHullSize) {
hull[i] = leftHull[leftIndex++];
} else if (leftHull[leftIndex].x < rightHull[rightIndex].x) {
hull[i] = leftHull[leftIndex++];
} else {
hull[i] = rightHull[rightIndex++];
}
// 更新最下面的点的索引
if (hull[i].y < hull[bottomLeftIndex].y) {
bottomLeftIndex = i;
}
if (hull[i].y < hull[bottomRightIndex].y) {
bottomRightIndex = i;
}
}
// 求解上凸壳
for (int i = bottomLeftIndex; i >= 0; i--) {
while (topLeftIndex >= 2 && triangleArea(hull[topLeftIndex - 2], hull[topLeftIndex - 1], hull[i]) <= 0) {
topLeftIndex--;
}
hull[topLeftIndex++] = hull[i];
}
for (int i = bottomRightIndex; i < leftHullSize + rightHullSize; i++) {
while (topRightIndex >= 2 && triangleArea(hull[topRightIndex - 2], hull[topRightIndex - 1], hull[i]) <= 0) {
topRightIndex--;
}
hull[topRightIndex++] = hull[i];
}
// 更新凸壳大小
*hullSize = topLeftIndex + topRightIndex - 2;
}
int main() {
// 定义点集
Point points[] = {{0, 0}, {1, 1}, {2, 2}, {3, -1}, {4, 4}, {5, 3}, {6, 2}, {7, 1}, {8, 0}, {9, -1}};
int n = sizeof(points) / sizeof(Point);
// 求解凸包
Point hull[n];
int hullSize;
convexHull(points, n, hull, &hullSize);
// 输出凸包
printf("Convex Hull:\n");
for (int i = 0; i < hullSize; i++) {
printf("(%d, %d) ", hull[i].x, hull[i].y);
}
printf("\n");
return 0;
}
```
该示例代码使用分治法求解凸包,首先将点集分成左右两部分,然后递归地求解左右两部分的凸包。接着合并左右两部分的凸包,找到最下面的点,并分别求解上凸壳。最后输出凸包即可。
需要注意的是,在合并左右两部分的凸包时,使用了类似归并排序的方法,将左右两部分按照x坐标大小进行排序。同时,需要使用三角形面积的方法判断上凸壳。
阅读全文