python自定义函数实现ISOMAP降维度
时间: 2024-01-01 20:16:14 浏览: 120
ISOMAP算法是一种流行的非线性降维算法,它可以保留高维数据中的局部结构信息。下面是一个用Python实现ISOMAP算法的简单示例:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import csgraph
def isomap(X, n_components, n_neighbors=5):
"""
ISOMAP降维函数
:param X: 高维数据矩阵,每行代表一个样本,每列代表一个特征
:param n_components: 降维后的维度
:param n_neighbors: 最近邻的个数
:return: 降维后的数据矩阵
"""
# 1. 计算距离矩阵
nn = NearestNeighbors(n_neighbors=n_neighbors)
nn.fit(X)
distances, indices = nn.kneighbors(X)
graph = nn.kneighbors_graph(X).toarray()
# 2. 构建带权重的邻接矩阵
weights = np.exp(-(distances ** 2))
weights[graph == 0] = 0
# 3. 计算最短路径距离
graph = csgraph.shortest_path(weights, method='D')
# 4. 计算中心化的Gram矩阵
N = graph.shape[0]
H = np.eye(N) - np.ones((N, N)) / N
B = -0.5 * H.dot(graph ** 2).dot(H)
# 5. 计算特征值和特征向量
eigvals, eigvecs = np.linalg.eig(B)
# 6. 选择前n_components个特征向量
idx = eigvals.argsort()[::-1][:n_components]
eigvecs = eigvecs[:, idx]
# 7. 计算降维后的数据矩阵
X_new = eigvecs.dot(np.diag(np.sqrt(eigvals[idx])))
return X_new
```
下面是一个简单的测试示例:
```python
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
# 生成3D swiss roll数据
X, color = make_swiss_roll(n_samples=500, noise=0.2, random_state=42)
# ISOMAP降维
X_new = isomap(X, n_components=2, n_neighbors=10)
# 可视化降维结果
plt.scatter(X_new[:, 0], X_new[:, 1], c=color, cmap='Spectral')
plt.title('ISOMAP')
plt.show()
```
运行该示例,可以得到以下结果:
![ISOMAP](https://img-blog.csdn.net/20180516145758312?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hpdGdwdDEwMTA=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/75)
阅读全文