print('Best val Acc: {:4f}'.format(best_acc))

时间: 2024-05-28 17:10:30 浏览: 16
这是一个Python语言中的字符串格式化操作,其中{}表示占位符。这段代码的含义是输出一个字符串,其中包含一个浮点数的值,该浮点数使用format函数中的参数替换占位符。具体来说,{:4f}表示将该参数替换为一个浮点数,并保留四位小数。因此,如果best_acc是一个浮点数,该代码将输出形如"Best val Acc: 0.123456"的字符串,其中0.123456是best_acc的值。
相关问题

def finetune(model, dataloaders, optimizer): since = time.time() best_acc = 0 criterion = nn.CrossEntropyLoss() stop = 0 for epoch in range(1, args.n_epoch + 1): stop += 1 # You can uncomment this line for scheduling learning rate # lr_schedule(optimizer, epoch) for phase in ['src', 'val', 'tar']: if phase == 'src': model.train() else: model.eval() total_loss, correct = 0, 0 for inputs, labels in dataloaders[phase]: inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'src'): outputs = model(inputs) loss = criterion(outputs, labels) preds = torch.max(outputs, 1)[1] if phase == 'src': loss.backward() optimizer.step() total_loss += loss.item() * inputs.size(0) correct += torch.sum(preds == labels.data) epoch_loss = total_loss / len(dataloaders[phase].dataset) epoch_acc = correct.double() / len(dataloaders[phase].dataset) print('Epoch: [{:02d}/{:02d}]---{}, loss: {:.6f}, acc: {:.4f}'.format(epoch, args.n_epoch, phase, epoch_loss, epoch_acc)) if phase == 'val' and epoch_acc > best_acc: stop = 0 best_acc = epoch_acc torch.save(model.state_dict(), 'model.pkl') if stop >= args.early_stop: break print() model.load_state_dict(torch.load('model.pkl')) acc_test = test(model, dataloaders['tar']) time_pass = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_pass // 60, time_pass % 60)) return model, acc_test

在在这在这段在这段代码在这段代码中在这段代码中,在这段代码中,定义在这段代码中,定义了在这段代码中,定义了一个在这段代码中,定义了一个名在这段代码中,定义了一个名为在这段代码中,定义了一个名为fin在这段代码中,定义了一个名为finet在这段代码中,定义了一个名为finetune在这段代码中,定义了一个名为finetune的在这段代码中,定义了一个名为finetune的函数在这段代码中,定义了一个名为finetune的函数,在这段代码中,定义了一个名为finetune的函数,该在这段代码中,定义了一个名为finetune的函数,该函数在这段代码中,定义了一个名为finetune的函数,该函数接在这段代码中,定义了一个名为finetune的函数,该函数接受在这段代码中,定义了一个名为finetune的函数,该函数接受三在这段代码中,定义了一个名为finetune的函数,该函数接受三个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、datal在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataload在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.Cross在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropy在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(fin在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finet在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标记在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标记stop在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标记stop。

python使用深度卷积神经网络,(采用预训练模型 VGG, GoogLeNet, ResNet, DenseNet 等),对图像数据集 CIFAR-10(https://www.cs.toronto.edu/~kriz/cifar.html) 进行分类,该数据集的训练集包含 50000 张图片,测试集包含 10000 张图片。 要求:准确率尽可能高;需要把训练集划分出 10000 张图片作为验证集,用来进行模型选择,可以使用 Kaggle 的免费 GPU 进行训练。需要在训练集和测试集上画出 accuracy vs. epochs,在验证 集上画出 loss vs. epochs,总共 3 幅图。

好的,这是一个比较典型的图像分类问题,下面我们可以按照以下步骤进行实现: 1. 下载并预处理数据集 2. 划分训练集、验证集和测试集 3. 加载预训练模型 VGG、GoogLeNet、ResNet、DenseNet 4. 构建模型并进行训练 5. 绘制 accuracy vs. epochs 和 loss vs. epochs 图 下面我们将逐步进行实现。 ### 1. 下载并预处理数据集 我们可以使用以下代码来下载并预处理 CIFAR-10 数据集: ```python import torch import torchvision.transforms as transforms import torchvision.datasets as datasets # 定义数据预处理 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 下载数据集 train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) ``` ### 2. 划分训练集、验证集和测试集 我们可以使用以下代码将训练集划分为训练集和验证集,同时将测试集保留: ```python from torch.utils.data import DataLoader, random_split # 划分训练集和验证集 train_dataset, val_dataset = random_split(train_dataset, [40000, 10000]) # 定义数据加载器 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) ``` ### 3. 加载预训练模型 VGG、GoogLeNet、ResNet、DenseNet 我们可以使用以下代码加载预训练模型 VGG、GoogLeNet、ResNet、DenseNet: ```python import torchvision.models as models vgg = models.vgg16(pretrained=True) googlenet = models.googlenet(pretrained=True) resnet = models.resnet18(pretrained=True) densenet = models.densenet121(pretrained=True) ``` ### 4. 构建模型并进行训练 我们可以使用以下代码构建并训练模型: ```python import torch.optim as optim import torch.nn as nn import time # 定义模型 model = vgg # 这里使用 VGG16 作为例子 num_ftrs = model.classifier[6].in_features model.classifier[6] = nn.Linear(num_ftrs, 10) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 训练函数 def train(model, dataloader, criterion, optimizer, device): model.train() running_loss = 0.0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(dataloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() train_loss = running_loss / len(dataloader) train_acc = 100. * correct / total return train_loss, train_acc # 验证函数 def validate(model, dataloader, criterion, device): model.eval() running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(dataloader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = criterion(outputs, targets) running_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() val_loss = running_loss / len(dataloader) val_acc = 100. * correct / total return val_loss, val_acc # 训练模型 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) best_acc = 0.0 train_losses, train_accs, val_losses, val_accs = [], [], [], [] for epoch in range(10): start = time.time() train_loss, train_acc = train(model, train_loader, criterion, optimizer, device) val_loss, val_acc = validate(model, val_loader, criterion, device) end = time.time() print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.2f}%, Val Loss: {:.4f}, Val Acc: {:.2f}%, Time: {:.2f}s'. format(epoch+1, 10, train_loss, train_acc, val_loss, val_acc, end-start)) train_losses.append(train_loss) train_accs.append(train_acc) val_losses.append(val_loss) val_accs.append(val_acc) # 保存最好的模型 if val_acc > best_acc: best_acc = val_acc torch.save(model.state_dict(), 'best_model.pth') ``` ### 5. 绘制 accuracy vs. epochs 和 loss vs. epochs 图 我们可以使用以下代码绘制 accuracy vs. epochs 和 loss vs. epochs 图: ```python import matplotlib.pyplot as plt # 绘制 accuracy vs. epochs 图 plt.plot(train_accs, label='train') plt.plot(val_accs, label='val') plt.xlabel('Epoch') plt.ylabel('Accuracy (%)') plt.legend() plt.show() # 绘制 loss vs. epochs 图 plt.plot(train_losses, label='train') plt.plot(val_losses, label='val') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() ``` 至此,我们就完成了对 CIFAR-10 数据集进行图像分类的任务,并绘制了 accuracy vs. epochs 和 loss vs. epochs 图。

相关推荐

最新推荐

recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

水箱加热系统的PLC温度控制课程设计.doc

plc
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

图像写入的最佳实践:imwrite函数与其他图像写入工具的比较,打造高效图像写入流程

![图像写入的最佳实践:imwrite函数与其他图像写入工具的比较,打造高效图像写入流程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ce618398b464903a8c60e0b57b51ab77.png) # 1. 图像写入概述 图像写入是将数字图像数据存储到文件或内存中的过程。它在图像处理、计算机视觉和数据科学等领域中至关重要。图像写入工具有多种,每种工具都有其独特的优点和缺点。了解这些工具的特性和性能差异对于选择最适合特定应用的工具至关重要。 # 2. 图像写入工具比较 ### 2.1
recommend-type

idea preferences

IntelliJ IDEA是一个强大的集成开发环境(IDE),它提供了丰富的配置选项,称为"Preferences"或"Settings",这些设置可以帮助你个性化你的开发体验并优化各种功能。 1. IDEA Preferences: 这些设置通常位于菜单栏的"File" > "Settings" (Windows/Linux) 或 "IntelliJ IDEA" > "Preferences" (macOS)。在这里,你可以调整: - 编辑器相关设置:字体、颜色主题、代码样式等。 - 工作空间和项目设置:项目结构、构建工具、版本控制配置等。 - 插件管理:启用或禁用插件,