self.beta = torch.tensor(0.0, requires_grad = True)
时间: 2024-05-28 16:15:29 浏览: 174
This line of code creates a scalar tensor with a value of 0.0 and sets the "requires_grad" attribute to True. This means that any computations involving this tensor will be tracked by PyTorch's automatic differentiation system, allowing for the computation of gradients with respect to this tensor during backpropagation.
In other words, this tensor is a learnable parameter of a neural network that will be optimized through gradient descent to improve the network's performance on a given task.
相关问题
# Create tensors. x = torch.tensor(1., requires_grad=True) w = torch.tensor(2., requires_grad=True) b = torch.tensor(3., requires_grad=True) # Build a computational graph. y = w * x + b # y = 2 * x + 3 # Compute gradients. y.backward() # Print out the gradients. print(x.grad) # x.grad = 2 print(w.grad) # w.grad = 1 print(b.grad) # b.grad = 1
这段代码使用 PyTorch 创建了三个张量 x、w 和 b,并将它们的 `requires_grad` 属性设置为 True,以便计算梯度。然后,使用这些张量构建了一个计算图,其中 y 是 x 和 w 的乘积加上 b。接下来,使用 `y.backward()` 计算了 y 对每个需要梯度的张量的梯度。最后,使用 `print()` 打印了每个张量的梯度值。在这个例子中,x 的梯度值是 2,w 和 b 的梯度值都是 1。这是因为 y 对 w 和 b 的梯度都是 1,而 y 对 x 的梯度是 w,即 2。
xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)其中requires_grad = True是什么意思
`requires_grad=True` 的意思是告诉 PyTorch 记录 xx 的计算过程,以便在后面进行自动求导时使用。这样,如果 xx 参与了某个损失函数的计算,那么在反向传播时就可以自动计算出 xx 对损失函数的梯度了。如果不指定 `requires_grad` 为 True,那么默认不会记录计算过程,也就无法进行自动求导了。
阅读全文